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ABSTRACT

•estT1 ei Tf the structure and
theory for a sequential quadratic
programming algorithm for solving large,
sparse nonlinear optimization problems.Also provided are the details of a

computer implementation of the
algorithm, along with test results. The
algorithm is based on Han's sequential
quadratic programming method. It
maintains a sparse approximation to the
Cholesky factor of the Hessian of the
Lagrangian and stores all gradients in a
sparse format. The solution to the
quadratic program generated at each step
is obtained by solving the dual
quadratic program using a projected
conjugate gradient algorithm. Since
only active constraints are considered
in forming the dual, the dual problem
will normally be much smaller than the
primal quadratic program and, hence,
much easier to solve. An updating
procedure is employed that does not
destroy sparsity.

Several test problems, ranging in
size from 5 to 60 variables were solved
with the algorithm. These results
indicate that the algorithm has the
potential to solve large, sparse
nonlinear programs. The algorithm is
especially attractive for solving
problems having nonlinear constraints. I
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INTRODUCTION

Constrained nonlinear optimization has been the subject of a

significant amount of research during the past two decades. As a

result, a variety of different types of algorithms for solving nonlinear

programs have been developed and tested. (See Lasdon and Waren [19791

for a report on the status of nonlinear programming software.) Many of

these algorithms, some based on the sequential quadratic programming

(SQP) method to be described later, have been found quite efficient for

solving small to medium-sized problems. As yet, however, there have

been few attempts to. construct algorithms for solving large-scale

nonlinear programs.

Those algorithms for which software now exists are not readily

adapted to large problems because they typically do not take advantage

of the sparsity of the Hessian matrices normally associated with large-

scale systems. This is a serious defect since the storage and handling

of large, dense Hessian matrices is prohibitively expensive. Those few

algorithms that have been specifically designed for large-scale problems

are normally considered most efficient for special types of problems,

such as geometric programs or those with linear constraints (for ..

instance, see Murtagh and Saunders [1982]).



This paper presents an algorithm, using the aforementioned SQP

method, that has been developed to handle large nonlinear programs,

including those with nonlinear constraints.

This algorithm has several unique features. It maintains a sparse

approximation to the Cholesky factorization of the Hessian of the

Lagrangian function. The quadratic program generated at each iteration

of the SQP method is transformed into a quadratic program having only

nonnegativity constraints corresponding to the multipliers associated

with inequality constraints in the original nonlinear program. The

transformed quadratic program, which is always feasible, is then solved

using a projected preconditioned conjugate gradient (CG) method, and

finally, the algorithm uses a quasi-Newton update scheme for the

factorization of the Hessian approximation that ignores fill-in.

The general form of the nonlinear program to be considered here is

(1) min f(x)

x re

subject to gj(x) 4 0, j 1 1, 2, ... , m,

hk(x) - 0, k = m + 1, ..., m + p.

0a

We will normally assume that f, g1 , g2  ", gm, hm + I' ",h + p are

twice continuously differentiable.

-2-
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Part I of this report discusses the structure and theory of the"-.':

algorithm. The discussion focuies on the features that differ from a .--

standard SQP algorithA. Part II describes the actual implementation of .

the algorithm and Dresents test results for several problems.
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NOTATION

We follow the following notational conventions. The gradient of a

real-valued function f of the vector x will be denoted by Vf(x), the

Hessian of f by V2f(x). The multiplier vector will be written as

(u', v')', where u is the multiplier vector corresponding to inequality

constraints and v is the multiplier vector for equality constraints.

The transpose of a matrix Q will be denoted by Q'. Likewise, the

transpose of the column vector u will be the row vector u'. Note that

no special notation is used for the multipliers corresponding to upper

or lower bounds on variables.

The Lagrangian function will be denoted by I(x, u, v) with the

2Hessian of the Lagrangian denoted by V1xt(x, u, v) and its positive

definite representation by Q-LL' where L is a lower triangular matrix.

The step vector will be s and the step length parameter will be

a. The current estimate of a solution will be given by xc and a new

estimate by xn .



* For a scalar a, [a]+ -max(O, a), lal - max{-a, a). For a vector

Z, let IZI = max{IziI} and 1z12 - E41i 2

Let A be a matrix. The i, j-th element of A is Au3q the j-th

41 column is Aj and the i-th row is A,.. The unit vector having all zeros

except in the i-th component will be denoted by ei.
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I.1 THE SEQUENTIAL QUADRATIC PROGRAMMING METHOD

The sequential quadratic programming method generates a sequence of

quadratic programs (QP) that approximate the local behavior of the

original nonlinear program (1). The Hessian of this subproblem is

updated from iteration to iteration using one of the variable metric

updating formulas (Han [1976]). The solution of the QP subproblem

generated at each iteration determines the step direction for that

iteration, and the multiplier vector associated with this solution to

the QP is taken as an approximation to the multiplier vector of (1).

The following is a brief overview of the SQP method.

Initially, let us assume that (1) has only inequality constraints.

The generalization to include equality constraints is straightforward.

Let xc e Rn be the current estimate of the solution to (1), uc e Rm the

current estimate of the Lagrangian multiplier vector associated with the

solution of (1), and I(x, u) the Lagrangian function, i.e.,

(x, u) " f(x) + u'g(x).

Let (x*, u*) be a Kuhn-Tucker point corresponding to a local minimum of

(1); that is, (x*, u*) satisfies the following:

EIS PAGE
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(2a) Vxl(X*, u*) - 0, ]
(2b) u*'g(x*) - 0,

(2c) u* > 0, and

(2d) g(x*) 4 0.

The SQP algorithm determines sx  R and su e Rm such that
x

(xc + sc , uc + Sc) is a first-order approximate solution to the equation

defined by (2a) - (2d). It can be shown that sc is the solution to the

following quadratic program:

(3) min Vf(xC)lsx + (1/2)SxtV2 x(Xc, uC)sx
sx

xx
subject to g(xc ) + Vg(xC)'sx -C 0

and uc + sc is the corresponding multiplier vector (see Boggs, Tolle,u

and Wang [1982]).

The SQP iteration for a nonlinear program having both equality and

inequality constraints can now be described as follows:

[1 Given xc , a current iterate, and Qc' a current approximation

of the Hessian of the Lagrangian, determine a Kuhn-Tucker point

( U, v ) of the quadratic program

-8-
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min Vf(xc)Isx +.(/
2)sx'Qcsx

sx

subject to gj(x c ) + vgj(xC)'sx < O, J . .., m

hk(xc) + Vhk(xC)'sx 0 0, k - m + 1, ... , m + p.

-2] Set

xn xC + asc, un  c vn  c
"_~ - Uq, v V

S.

where a is a step-length parameter chosen so that an appropriate penalty

function is decreased.

[3] Update Qc so that Qn is an approximation of

V2 x n , un , vn).

With the above iteration as a basis, the SQP method would be

expected to have many of the properties of the well-known variable

metric methods for unconstrained minimization, since in the absence of

constraints, the SQP method reduces to a variable metric algorithm. For

the constrained case, however, the Hessian (of the Lagrangian) need not

iS be positive definite, thus the standard positive definite updates such

as the BFGS or DFP (see Fletcher [1980] and Dennis and Schnabel [1983])

may not be appropriate. To date, local superlinear convergence has not

been established for the use of positive definite updates except in the

@,
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case where the Hessian of the Lagrangian at the solution is positive

definite. (See Han [1976] and Boggs, Tolle, and Wang [1982].)

There are nonpositive definite choices for the matrices Qc that

will lead to local superlinear convergence, as shown by Wilson [1963]

(who uses the Hessian of the Lagrangian itself) and Han [1976]. But in

these cases the solution of the quadratic program in step [1] is not

straightforward; in fact, there may be multiple solutions. Nocedal and

Overton [1983] have recently developed an updating scheme for equality

constrained problems that may help to resolve this difficulty, but its

* application to general problems is not yet ensured.

In light of the absence of a feasible alternative, most optimizers

implementing an SQP-type algorithm have opted for using positive

definite updates of the BFGS or DFP type. The experimental results have
J

been quite good (see Hock and Schittkowski [1981]) despite the lack of a

solid theoretical underpinning. The approach of this paper is based on

the same practical considerations, and hence a positive definite

updating scheme will be used.

A vital part of an SQP algorithm, as for any algorithm for solving

(1), is a provision for forcing convergence from a remote starting
point. In the unconstrained case, this is accomplished by requiring a

decrease in the objective function at each iterate. For constrained

optimization, reduction of the objective function must be balanced

-10-
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against satisfying the constraints. This balancing act is usually

achieved by requiring a reduction in a "merit" or "penalty" function at

each iteration. Ran [1977] proposed that

• ", + m m+p

(4) Pr(x) " fOx) + r Z [gj(x)]+ E Ihk(x)l}
i= k-m+l

be used as a merit function, where r is larger than the absolute value

of any of the multipliers associated with the solution to (1). Under

reasonable conditions, he shows that any sequence {(xk , uk,

generated using the SQP algorithm with a positive definite update and

* this merit function will converge to a Kuhn-Tucker point. The algorithm

developed for this paper employs Ban's merit function, thus guaranteeing
global convergence under the conditions imposed by Ran.

In spite of ensuring global convergence, this merit function is not

entirely satisfactory. In particular, it does not guarantee that full

ksteps, i.e., - 1, will be taken as x approaches x*. This may

restrict the convergence rate to be less than superlinear. Chamberlain,

Lemarechal, Pedersen, and Powell [1979], Boggs and Tolle [1980, 19811,

and Bertsekas [1980, 1981] have developed other merit functions that do

allow for a , 1 near a solution. However, these merit functions are

computationally more complex than (4) and were not considered suitable

*- for a large-scale algorithm.

%-11-
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General references on nonlinear programming methods that contain

discussions of the SQP method and some of the other available methods

include Fletcher [1981] and Gill, Murray, and Wright [1981].

-12-
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1.2 STRUCTURE OF A SPARSE SQP ALGORITHM

The algorithm presented here is designed to solve large-scale

nonlinear programming problems having sparse Lagrangian Hessians.

Because it uses the SQP method, the algorithm is particularly well

suited for solving problems having nonlinear constraints. The algorithm

-1 allows for any sparsity pattern in the Hessian of the Lagrangian, i.e.,

no particular sparsity pattern is assumed. Linear constraints and
0

upper- and lower-bound constraints on the variables are handled

explicitly by the algorithm. The number of constraints is theoretically

unlimited; however, an active set strategy is used and the number of

constraints active at any given time is constrained by the amount of

memory available. Also, the algorithm is more efficient when the number

of active constraints is small relative to the number of variables.

The following discussion describes the structure of the algorithm.

The discussion focuses on the features of the algorithm that permit the

SQP method to be applied to larger problems.

:-0-
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1.2.1 SPARSITY

The algorithm described here is designed to exploit the sparsity

often found in large-scale problems. Such problems usually have sparse

Lagrangian Hessians and sparse gradients. Handling sparse gradients is

not difficult and most algorithms can be easily adapted to do so.

However, the handling of a sparse Lagrangian Hessian is not so easy

because, in general, matrix operations do not preserve sparsity. The

Hessian of the Lagrangian, or an approximation of it, appears in most

nonlinear optimization algorithms and will normally be used as the

coefficient matrix of a system of equations that is used to compute a

step direction as in the SQP algorithm. Exploiting the sparsity of the

Hessian of the Lagrangian is important for two reasons. First, in large

problems using the sparse structure often reduces the total amount of

computation required. Second, storing a sparse matrix requires much

less memory than storing a full matrix. Even if a computer has

unlimited capacity for storing the matrix, such as is the case for

virtual memory machines, manipulation of the full matrix may cause

considerable paging of memory as different parts of the matrix are

accessed. The resulting I/0 time for swapping the different parts of

the matrix between core and a high-speed storage device can be

expensive.

We have chosen to store the representation of the Hessian of the

Lagrangian as a lower triangular matrix under the assumption that the

-14-
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approximation to the Hessian of the Lagrangian will be maintained as a

positive definite matrix. Unfortunately, the Cholesky factor of a

sparse symmetric and positive definite matrix need not be sparse.

George and Liu [1981], however, describe an algorithm for perimuting the

rows and columns of a sparse, symmetric positive definite matrix that

significantly reduces the fill-in that occurs in the lower triangular

Cholesky factor. The authors also describe a storage scheme for the

sparse matrix and code for solving systems of equations defined by the

original matrix by performing forward and backward substitution on the

triangular factor to obtain the solution.

. Representing the Hessian approximation as the lower triangular

factor has other computational advantages. The next section discusses

the solution of the dual to the quadratic program defined by each

iteration of the SQP algorithm. Generation of this dual problem is much

simpler if the lower triangular factor is available. (See section

11.3.4.)

1.2.2 SOLVING THE QUADRATIC PROGRAM

The quadratic program (QP) generated at each iteration of the SQP

* .- *.*method has the form

-15-
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(5) min (1/2)s'Qs + q's
8

subject to As 4 a

Bs --

For a large-scale, sparse problem Q will be a large, sparse matrix.

Standard methods for solving quadratic programs, such as the pivoting

methods of large-scale linear programming methods, either do not take

advantage of the sparsity structure or are too complicated for repeated

use in a nonlinear programming code. The quadratic program generated by

* the SQP method may be infeasible. By solving the Wolfe dual (Wolfe

(1961]) to (5) these problems can be avoided.

If (5) is feasible and Q is positive definite, then the Wolfe dual

of (5) will be feasible and will have a nonempty solution set. The

structure of this algorithm maintains a positive definite representation

of Q. If the set (s :As 4a, Es - b I is empty, the solution obtained

'.1 from solving the Wolfe dual of (5) will be a "least infeasible" solution

of (5). (See appendix B.). We solve a transformed version of the dual

* problem rather than the primal problem because it is a quadratic program

having only nonnegativity constraints on variables that are the

multipliers corresponding to the inequality constraints in (5). A

projected preconditioned conjugate gradient algorithm for solving the

transformed Wolfe dual problem is given in section 1.3.
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There are several advantages to solving the dual QP. If the number

of active constraints is small relative to the number of variables in

the nonlinear program, then the dual problem will be much smaller than

problem (5). Moreover, since the solution to (5) is the step direction

used by the SQP method, one would expect the step directions to change

significantly from iteration to iteration, even when close to a solution

of the nonlinear program. However, the solution to the dual problem can
N

be shown to be a good approximation to the multiplier vector of the

nonlinear program and should not change much from iteration to

iteration. Consequently, a great efficiency is gained by using the

estimated multiplier vector from the preceding iteration as the initial

estimate in solving the dual.

Choi, Haug, Hou, and Sohoni [19831 report on the use of an

algorithm developed by the Russian Pshenichny [1970] to solve optimal

design problems. Pshenichny's algorithm is similar to the one described

here in~ that he solves a sequence of quadratic programs by solving their

duals. His sequence of quadratic programs is similar to Han's except

that the matrix defining the quadratic program is always the identity,

i.e., no second order information is used. Thus the algorithm is

significantly different from that proposed herein.

-17-



1.2.3 STEP-LENGTH CONTROL

Having determined a step direction by obtaining the solution to

(5), it is necessary to take a reasonable step in that direction. Since

large problems are being solved, the method of controlling the step

length must be relatively simple. We have chosen to use the penalty or

merit function of Han [1977]

(6) (a) " f(x + as)

m M+p

+ r f z (g (x + as)]I + E ~hk~~s-i+ k-m++1

where x is the current estimate of the solution to the NLP and s is the

step direction. The step-length parameter is a. The scalar, r, is

chosen to be larger than the largest multiplier in absolute value. A

step, as, will be taken if an a can be found that produces an acceptable

decrease from *(0) to c(a). The details can be found in section 1.4.

1.2.4 UPDATING PROCEDURES

The standard SQP method maintains an approximation to the Hessian

of the Lagrangian which is updated after each iteration using one of the

well-known matrix updating methods. One of the more common methods is

the BFGS updating method (Dennis and More [1977]). The algorithm given

here, however, maintains a sparse representation of the approximation to

-18-
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the Hessian which the standard BFGS updating scheme does not do.

Therefore, we have chosen a method of Goldfarb [1976] for updating the

Cholesky factor of a positive definite matrix. Fill-in is ignored in

applying the method. If fill-in were allowed, the method would produce

the standard BFGS update for the Cholesky factor. Details can be found

in section 1.5.

1.2.5 A BASIC ITERATION OF THE ALGORITHM

The following is a description of a basic iteration of the

algorithm developed here. The algorithm uses an active set strategy.

Equality constraints are always active and inequality constraints are

active at the current iterate if they are infeasible or nearly so at

that point. Upper- and lower-bound constraints are treated as general

inequality constraints in the description of a basic iteration. The

actual implementation, as described in Part II, explicitly handles

upper- and lower-bound constraints.

[1] Solve the transformed QP for the multiplier vector. Let

(xc, uc, vc) and Lc be the current estimate of the Kuhn-Tucker

* -' vector and the approximate lower triangular factor of the Lagrangian

Hessian, respectively. The QP generated by the standard SQP method is

"-" " -19-



(7) min Vf(xc)'s + (1/2)s'LcLc'S

s C RP

subject to: Vg(xC)Is + g(xc) 4 0

Vh(xC)'s + h(xc) 0

-

Let be the vector of active inequality constraints -- including active

upper- and lower-bound constraints. The solution to (7) and the

associated multiplier vectors are obtained by transforming (7) into

(8) min (1/2)(u', v') K (u', v')? + (u', v') k
U £ Rmw

v e RP

subject to u > 0

where

K = (Vg(xc), Vh(x))'L;l'L-t(Vg(xc), Vh(xc))

and

k - (Vg(xC), Vh(xc))'L- l'LVf(xc) - (g(xc)', h(xc)')',

and m' is the number of active inequality constraints, including active

upper- and lower-bound constraints. (The number of active inequality

constraints, m', may change from iteration to iteration.) Let p' m ' +

p. Then K is the p' x p' matrix defined by K = M'M, where

I
' ' -20-
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M - ( (xc h(XC)).

The matrix M can be computed by p' forward substitutions using the lower

triangular matrix Lc . Once M is formed, another forward substitution

produces q - L;lVf(xc) so that k - M'q - (i(xc) ' , h(xc)') ' .

A projected preconditioned conjugate gradient algorithm is employed to

solve (8).

Let (ung, vn') ' be the solution to (8).

[2] Solve for the step direction. Let sc be the solution to

LCLls - - (Vf(xc) + Vg(xc)un + Vh(xc)vnl.

(If inequality constraint gj is considered inactive, then uj is set to

0.) If QP (7) is feasible, then sc is its solution. If QP (7) is not

feasible, then an sc is obtained which is a point of minimal

infeasibility. Note that only one forward substitution and one backward

substitution are required to solve for s.

[3] Compute the step-length. Let r > max {lunI, Ivni}
i, J

and

-21-



,(a) f(xc + asc) + r{ E [gi(xc + a5C)]

p
+ E Jhj(x c + sc)IJ.

4jil

Choose ac such that 0 < a < 1.0 and *(ac) is sufficiently smaller than

*(0). Set xn a xc + aCsC.

[4] Check for termination. Compute the gradient of the Lagrangian

function at (xn, un, vn), Vx(Xn, un, vn), and terminate successfully if

IVxt(xn, un, vn)l is small relative to the objective function value.

[5] Update the triangular factorization. Update Lc but maintain

the sparsity structure. Use the BFGS updating procedure for the

Cholesky factor of a positive definite Hessian developed by Goldfarb

[1976] with a modification that preserves the sparsity pattern in Lc.

[6] Go to [1] for the next iteration.

*The following sections of Part I discuss these steps in more

detail. Part II describes the implementation of the algorithm and

provides many of the details not given here, such as what to do if no

acceptable step is possible in the direction sc.

4.-22
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1.3 THE QUADRATIC PROBLEM

Transforming the general quadratic program defined in (7) into the

*quadratic program having only nonnegativity constraints on some of the

variables (8) has two advantages. First, if the number of active

constraints in the original problem is small relative to the number of

.f. variables, then the transformed QP will be much smaller than the

original and will have simple constraints. Second, solving the

transformed problem with a conjugate gradient method has proved to be

very efficient (see Part II). This is especially true when near a

solution as the initial estimate of the solution to the transformed

problem will be close to the multipliers for (1) and will not change

A much from iteration to iteration. The conjugate gradient algorithm will

therefore have to do very little work to refine the estimates on each

iteration. In constrast, the solution to the general quadratic program

(7), being the step direction, will change significantly from iteration

to iteration. Hence, using the step direction from the preceding

iteration as the initial estimate of the solution will not improve

computational efficiency. If the original QP (7) is infeasible, the

transformed problem is still feasible but unbounded, though it can be

made strictly convex by a simple adjustment. Infeasibility of the



original QP should occur only when far from a solution to (1), and it

will be shown that the step direction computed using the approximate

multipliers obtained from the adjusted version of (8) will allow the

algorithm to continue making progress.

* Problem (7) could be solved using one of the pivoting algorithms

(see Dantzig [1963] and Beale [1967]). These algorithms, however, are

not particularly useful for solving large, sparse problems because they

destroy sparsity. Thus, they are not considered useful for solving (7)

in the context addressed here. They were also not considered for

solving the transformed problem (8) even though these problems should be

smaller than (7) and, possibly, denser. The reason is that the pivoting

methods cannot be used to refine an estimate of a solution that is

already close to the desired result. Pivoting methods do not start with

an estimate of the solution so, unlike the CG methods, they do not

exhibit a decrease in computation when a good estimate of the solution

is already available.

1.3.1 THE WOLFE DUAL

Suppose Q is a positive definite n x n matrix, A and B are,

respectively, m x n and p x n matrices, and q, a, and b are fixed

a vectors of appropriate dimension. The general, strictly convex

quadratic problem has the form

.J4
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(9) min (1/2)s'Qs + q's

s C1

subject to As 4 a

Bs = b.

The Wolfe dual to this problem (Wolfe [1961]) can be written

- .%

(10) max (1/2)s'Qs + q's + (As - a)'u + (Bs - b)'v

(s, u, v) e Rn+m+p

subject to Qs + q + A'u + B'v 0

u > 0.

4 In the case where Q 0, problems (9) and (10) become the standard dual

pair of linear programs.

Since Q is positive definite, the equality constraint in (10) can

be solved for s and then s can be replaced in the objective function.

. Thus, letting w (u', v')' e Rr+P, (10) can be written as

2.

*
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(11) min (1/2)w'Kw + k'w
w e Rm+ p

subject to u > 0,

where K VQ-1V ' , V - (A', B')', and k VQ-lq + v. Here

v - (a', b')'. Note that K will be positive definite if and only if V

has full row rank, else it will be positive semi-definite. In the

former case the following theorem is well known.

Theorem 1: Suppose V - (A', B')' has full row rank, then both (9) and

(11) have unique solutions, say s* and w* - (u*', v*')', w* is the

multiplier vector for (9), and

(12) s* -- fQ-1 [A'u* + B'v* + q].

Sometimes, however, there are enough inequality constraints so that

m + p > n. Then V cannot have full row rank and the above result does

not apply. However, if (9) is feasible, we have the following result.

(See Wolfe (1961].)

0

Theorem 2: Suppose (9) is feasible. Then problem (9) has a unique

solution s* and problem (11) has a nonempty solution set W*. Moreover,

for any w* - (u*', v*')' e W*, equation (12) holds. If (9) is

0
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'pinfeasible, then problem (11) is unbounded and has no solution.

In the application of problem (9) in the algorithm given here, it

is possible that the quadratic problem may be infeasible. In this case,

the following result will be applicable.

Consider the perturbed version of (11):

WV(13) min (l/2)w'(K + eI)w + k'w

w e Rm+P

subject to u > 0

where e is a small positive number. Since K + eI is a positive definite

matrix, problem (13) has a unique solution we _ (us, vc). We denote by

6-' (14) sc - Q-flA'ue + B'vC + q].

For a given s vector we measure its infeasibility in the original

* quadratic problem (9) by

e(s) - I(As - a1+12 + lBs -b
1il 2 .

-Then e(s) -0 if and only if s is feasible for (9). The set of least

infeasible points is denoted by

.n),

Z -{s: e(s) 4e(t) for all t e Rn}

'5.. -27-



Clearly, Z is a convex, closed, nonempty subset of Rn. If (9) is

feasible, it is exactly the feasible set.

Theorem 3: Let fwr } be the family of solutions to (13) for positive

values of e, and for each e let se be given by (14). Then

lim s- s

e -).0+

where s is a solution of the problem

(15) mn (I/2)s'Qs + q's.
s e Z

Pf: See Appendix B.

In the algorithm presented for solving problem (1), Q is the

updated approximation of the Hessian matrix, which is positive

definite. A is taken to be the gradients of the active inequality

constraints and B the gradients of the equality constraints at the

current iterate xc. By active constraint, we include all of the

equality constraints and any inequality constraints for which

gj( xc) > -), where n > 0 is a prescribed tolerance. Assuming

feasibility and nondegeneracy for the original problem, the quadratic

programs to be solved will likely have less than full row rank only when

-28-
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• ,the approximation is far from feasibility. In this case, the perturbed

dual problems will be solved with small e. Theorem 3 provides

justification for this procedure in that it ensures that the solution se

will be a step toward minimum infeasibility.

1.3.2 THE CONJUGATE GRADIENT ALGORITHM

Before considering the application of the conjugate gradient method

to the minimization of a quadratic function subject to nonnegativity

constraints, we should review some of its properties when applied to the

unconstrained minimization of a quadratic function. The conjugate

gradient method for solving

' (16) min F(w) - (l/2)w'Kw + k'w

n_.. , w cpR

*.'

is as follows:

[0] Starting at any w° e Rn set 1 -0, and define

0,..m0,,..

-p0 -VwJ)- -Kw -k.

(1] Set w 1 iw+cpt

* VF(WX twiwhere a- -
p K p

-29-
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-.%.. -a - . . . . . . . . . ..

a-v

[2] If VF(wl+ I) - 0, set w* - w1+ l and terminate with w* as the

solution to (16). Otherwise, go to (3].

[3] Set p1+1 - -VF(wl+') + pl,

where - VF(w ) p11

p"' K p)

[4] Set I I = + 1. Go to [1].

In exact arithmetic, the algorithm terminates in at most n iterations

for positive definite K. The conjugate gradient algorithm converges

monotonically to w* in that if we define

E(w) (w - w*)' K (w - w*)

then it is easy to show that

E(w-t+l) - E(w') - [VF(w 5 ' P .12 E(w')
p, K p)

Thus, in the metric defined by the positive definite matrix K, the

conjugate gradient estimates get closer to the solution on each

iteration. Likewise, it is easy to show that

F(w,+l) _ F(wI) - _ [VF(w )'p 1 2

2 p"K p'

'pp
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showing that the objective function is decreased on each iteration. It

should be noted that solving (16) for positive definite K is equivalent

to solving Kw + k - 0 for w.

'. If we let r' - Kwl + q, we can think of the CG algorithm as either

*- trying to find a zero of the gradient or trying to make the residual

associated with the linear equation, r, equal to zero. Unlike most

methods for solving linear systems of equations, the CG method does not

mK alter the matrix K and involves only matrix-vector multiplications.

The finite termination property and the monotone decrease in the

distance between wl and w* as defined by the matrix norm are also

achieved by a modification to the conjugate gradient algorithm (see

Polyak [1969]) which minimizes a quadratic function subject to

nonnegativity constraints on the variables.

Let y - Kw + k. Then w* solves (16) if and only if

* *,

v.4  (17) Yj > 0 if wi - 0 and

(18) Yi 0 if wi > 0.

These are the Kuhn-Tucker conditions for the solution to (16). Another

way of stating these conditions is to say that w* solves (16) if and

only if

-31-



(19) w*'y* - 0 (complementarity condition) and

(20) w*, y* > 0 (nonnegativity condition).

Polyak's algorithm, which is the basis of the algorithm developed by

-' O'Leary [1981], maintains nonnegativity of the vector iterates wX while

i: iterating toward satisfying the remaining conditions in (19) and (20).

Polyak's algorithm terminates in a finite number of iterations (O'Leary

[1981]).

1.3.3 A PROJECTED PRECONDITIONED CONJUGATE GRADIENT (PPCG) ALGORITHM

O'Leary [1981] describes a modification to Polyak's algorithm that

preconditions the CG step to improve the convergence rate of the

algorithm. She also proves that her algorithm converges in a finite

number of iterations. O'Leary's algorithm has been modified for the

work described in this application. The standard CG step is projected

onto the feasible region as opposed to O'Leary's method of truncating

the step at the boundary of the feasible region. Taking projected steps

has the advantage of allowing more than a single variable to become

inactive on an iteration, while truncation will permit only one variable

to become inactive on a single iteration.

-32-
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A preconditioned conjugate gradient algorithm for (11) uses

M-VF(w1 ) rather than VF(wl) to define p'+l in step [3] of the CG

algorithm, where b-I is some approximation to KI . One obvious choice

for K-1 is the inverse of the diagonal of K. Another choice, and the

one actually employed here, is one pass of the symmetric successive
.p..

over-relaxation (SSOR) method as applied to the system of equations

defined by Kw + k =0. The following is a description of the PPCG

algorithm.

In our description of the PPCG algorithm, N will be the set of

indices of components of w that are constrained to be nonnegative and R

will be the set of remaining indices. A vector w will be a feasible

V" solution to the quadratic program if wi > 0 for i e N. At any given

time, a variable will be considered active or inactive. Only

constrained variables can be inactive. An inactive variable will always

." be at its bound, i.e., equal to zero. A variable, however, may be at

its bound but not considered inactive.

The PPCG Algorithm

[0] (Initialization) Choose w° such that wo ) 0 for i e N and

set 1 O. Set I N.

313
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[1] (Outer iteration) Set £ I I + 1, yI = Kwl + k, and It_ I.

Define I, - {i £ N: wl - 0 and yi > 0}. If 1 - 1 and lyil < £ for

i t I,, then terminate; otherwise, set I - I,. (Note: e is the

tolerance on the norm of the residuals for termination.)

[2] (Inner iteration) The inner iteration only manipulates active

variables. During the inner iteration, variables that are active may

become inactive, but no inactive variables become active. Inactive

variables can become active only during execution of step [1]. Let J be

the set of indices of active variables, then any variable index belongs

either to I or J. The matrix system is partitioned as follows:

W k K K'
W + I , k + K

p w kJ K I Kjj

Initialize to solve the equation

(21) Kj w3 - -kj - KjI wI.

Set z°  w and r°  -kj - KjI w- Kjj z. Go to step

* I.

[3] (Restart inner iteration) If a projected step was taken, the

variables that have been set to their bounds must be checked to see

whether they should become inactive variables. Also, the residual

-- 34-
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vector must be recomputed since the CG formula for updating the residual

is not valid for a projected step. Set z° - and

r° - -kj - KjI wI - Kjj zo. For each i e J fl N do the following:

if zo - 0 and ri 4 0, then add i to I. Repartition as necessary. If

there are no active variables, then restart the outer iteration (go to

-4, (11).

5' (4] (Calculate new iterate and residual) Set

of 0
r r

aCG 0 0
r K r

Set zI - z + aCG r9. For each i e Jfl N, do the following: set

zi [zi]+ and set a projection flag if this is a projected step.

(Note: O'Leary's algorithm allows only one variable per iteration to

become inactive, whereas this one may set more than one to the inactive

state on a single iteration.)

If this is a projected step, set wj - zI and go to [3]. Otherwise,

set r r°  CG K r

(5] If r l  (e, set wj - zI and restart the outer iteration (go

to (1]).
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(61 (Initialize preconditioned iteration) Choose M as a

preconditioning matrix for Kjj, set q - 1, and let p' -

[7] (Calculate new iterate and residual) Set

rq1 pq rq' M-I rqaCG - L.... r M

pqv K pq pq1 K P q

z q+1 Z zq + aCG pq

For each i e J r) N, do the following: set z + 1 [zl+l]+ and set the

'- projection flag if this is a projection step. If this is a projected

./. step, set wj M zq+ l and go to [3]. Otherwise, set

-. rq+l - rq - aCG K' pq.

o [8] If r q+ l do set w i s zq +  and restart the outer

IJ

L-Z
stepraeton (o o a)3

_[9] (Calculate new search direction) Seta

-36-
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" q K 9 1 r+l r (q+l), W-1 rq+1

bq " qj Kjj r q M r q

Pq M-Irq+l + bqp
q

q -q + 1

Go to [7] for the next preconditioned step.

O'Leary's algorithm does not take projected steps; instead, a step

is truncated at the first boundary it encounters. If M is set to the

identity in O'Leary's algorithm, then the algorithm is identical to

Polyak's. As long as the preconditioning matrix, M, is positive

definite, O'Leary's algorithm converges after a finite number of

iterations. The projected version of this algorithm has performed well

on the problems used for testing the algorithm developed in this paper;

however, a thorough investigation of its properties remains to be done.

Possible choices for M include the diagonal of Kj,. M is clearly

positive definite in this case if K is positive definite, so for

O'Leary's algorithm the finite convergence property will hold. Another

choice, which O'Leary investigated, is to define M-lr as follows. Let

Mr z _z1

4-37-
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where is the vector obtained by applying one iteration of the

symmetric successive over-relaxation (SSOR) algorithm to system (21)

- with z as the current estimate of wj. In O'Leary's version of this

application of the SSOR method, variables are truncated during the

forward and backward passes. The M corresponding to this process is not

necessarily positive definite, so'the properties of the algorithm are

unknown. However, O'Leary reported good results with this

preconditioning method. For the projected algorithm described here, the

variables are not truncated during the forward and backward passes of

the SSOR method. Consequently, the preconditioning matrix M defined by

this process is positive definite (see Hageman and Young [1981]) and

should make the investigation of the properties of the projected CG

algorithm easier. The following is a description of the forward and

backward passes of one iteration of the SSOR method.

.- %

'.
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SSOR Algorithm

[1] Let Fj- kj- Kjlw1 .

[2] For j - 1, 2, ... , a, where s is the order of Kjj, set

-f i J-i f s
zj -1zj + - Kjz)/Kjj

and w e (1, 2) is the relaxation parameter.

[3] For j - s, s - 1, ... , 1 let

_ f j _f s5
z f + W (F- Z Kj z f Kj )/Kjj•

A Ij+l

The SSOR method can be used to solve systems of equations defined by a

positive definite matrix. As a preconditioning step for a CG algorithm,

a single SSOR iteration should provide a refined estimate for the next

step direction.
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1.4 MERIT FUNCTION FOR STEP-LENGTH CONTROL

We use Han's merit function for step-length control. Suppose the

current iterate is x~ and the step vector is s , then let

Pr(x c + asc), where Pr(') is given by (4) and a, 0 < a 4 1, is

the step-length parameter. We set x n - xc + asc if

* 0(a) 4 0(O) + c cao'(0), where 0 < ar 4 1. The derivative, *(0), is the

right-hand derivative of *at 0 and is computed as follows.

Define

0: j~c) 0or rgj(xc) -0

Gand 791(c c< 0]

(Vgj(xc)'sc: otherwise

Jb

for inequality constraints, and



- Vhk(xC)5': hk(xC) < 0,

k  Vhk(x')'sC: hk(xc) > 0,

I hk(x)sC : hk(xc) - 0,

for equality constraints. Then 0'(0) is given by

-m m4-p
(22) 0'(0) = Vf(xc)is + r { E G + E

ji km+l1

where r is larger than the absolute value of any of the multipliers.

The choice of a determines the strictness of the test. Normally, a

is set to 0.1. Note that in general, 0(.) is a continuous, but not

necessarily smooth, function of a. It is still the case, however, that

for some a e (0, a) with 0 < a (1 the test can be passed if s is

really a descent direction for Pr( .) '

Ran's [1977] algorithm differs from the one developed here in that

the new iterate, xk+l, is given by

xk+l . xk + aksk

for any ak in [0, C] satisfying

P(x k + ' ) 4 min arX s k ) + Ck

,I

Pr(X~)( m Pr(xk + ~k

-41-
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- k

4,' with {ek} a sequence of numbers satisfying

kE£<
k-O

and is some positive number. Han shows that his algorithm, with a

proper choice of r for the merit function (4), is globally convergent

under the following conditions:

(i) f, gj, j , 1, ..., m, are continuously differentiable;

(ii) f is strictly convex and bounded below;

* (iii) the constraint functions are convex;

(iv) the set X = {x: g(x) 4 0} is compact and

X0  {x: g(x) < O} 0;

(v) there exist positive numbers X, and X2 such that for each k

and for any x e Rn,

X1 x'x 4 x'Qkx 4 X2 x'x.

This result can be extended to include equality constraints. In the

same paper, Han proves a weaker global convergence property requiring

only conditions (i) and (v) and that each quadratic program generated by

the algorithm have a Kuhn-Tucker point with a Lagrange multiplier vector

bounded by r in -norm. Note that these global convergence results
..\

require only that the Hessian approximation matrices, Qk, be positive

*" definite, with their eigenvalues bounded above and below. The step-

-42-
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length control parameter used in the algorithm developed here uses the

same merit function as Han, but we do not require the nearly exact

minimization over a as Han does. Instead, we require the step to

achieve a rate of descent compatible with the local behavior of the

problem functions. This approach is similar to the Goldstein-Armijo

principle (see Fletcher [1980]) and has performed well in testing (see

Part II).
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1.5 SPARSE UPDATING PROCEDURE

Variable metric algorithms for unconstrained minimization update

approximations to the Hessian in such a way that the quasi-Newton

condition is satisfied. Let f be the objective function of an

unconstrained minimization problem and let Qn be the updated

* approximation to the Hessian. Then the updating procedure used to

obtain Qn satisfies the quasi-Newton condition if

-Ux x c) _ Vf(xn) _ Vf(xc).

V° .. ,

Updates satisfying the quasi-Newton condition, such as the BFGS update,

have many desirable properties, including superlinear convergence (see

Fletcher [1980]). If the Hessian of f is sparse, it is advantageous if

the updating procedure maintains the sparsity pattern. Shanno [1980]

* has shown, however, that it is not, in general, possible to have an

updating scheme that satisfies the quasi-Newton condition, maintains a

given sparsity pattern, and preserves positive definiteness.

ha hwhweeta t snt ngeeapsibet aea

-V. paigshm htstsisth us-etncniin anan

-... genpastpatradpeeespstv deniees
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The same problem arises for the constrained problem where the

quasi-Newton condition is

- (23) Qn(xn - xc) -VxX(xn, un, vn) -Vxi(x c , un, vn).

As discussed earlier, the solution of the quadratic subproblems requires

that the updating scheme be positive definite. Moreover, for solving

large problems, maintaining the sparsity pattern of the Lagrangian

Hessian is essential. Therefore, the requirement that the update

satisfy (23) has been dropped in favor of maintaining the sparsity

* pattern. The update is forced to have the desired sparsity pattern by

"zeroing out" the appropriate elements in the lower triangular factor of

the update. The effect of this decision on the local convergence rate

is unknown even in the unconstrained case. Test results, however, have

2-'. been encouraging. Thapa [1983] reports favorable results for this type

of procedure applied to the BFGS update for unconstrained optimization

as long as the updated factor remains positive definite.

Since the algorithm developed here maintains a sparse lower

triangular approximation to the Cholesky factor of the Hessian, a

procedure for updating the lower triangular approximation is used. The

procedure is a modification of Goldfarb's [1976] BFGS procedure for

updating the Cholesky factor of a positive definite Hessian

approximation. The procedure is simple to implement. Other methods for

updating a sparse Hessian approximation have been developed by
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Shanno (19801 and Toint [1977]. These methods were not used because of

their complexity and because they are not directly applicable to

updating a lower triangular factor.

Goldfarb Updating Procedure

Let sn _ xn - xc and let Lc be the current approximation to the

lower triangular factor of the Hessian of the Lagrangian, i.e., let

Qc = LcLc'" The BFGS update for Qc is given by

n n,V +Q s Q
CT c C

Qn=QC + an? y an, CSnI.n

where y = Vxt(Xn, u, v n) - Vxi(Xc, u, vn). Let p s n and

q - y/[(sny)(sn,QCsnL)]1/ 2 - csn/sntQcs

Define z and w by Lcz - q and w - Lc'p. Then

Qn (I + qp')LCLc'(I + pq')

- Lc(l + zw')(l + wz')Lc'.

We wish to find L such that (I + zw') - LO', with L lower triangular

-46-
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and 9 orthogonal. Then

Qn - LCL Q'Q L'Lc' - LcL(LCL )'

so that Ln = LCL is the new approximation to the Cholesky factorization

of the Lagrangian. Ln will not necessarily have the same sparsity

structure as Lc; however, it is simple to ignore fill-in in L.. If

w'z = -1 so that I + zw' is singular, then we cannot update. However,

w'z - -I occurs only if s'y - 0. If s'y C 0, a modification suggested

by Powell [1978] is used that maintains the positive definiteness of the

update (see Part II).

The L sought is given by

pj: i=

Lij = Sjwi + Yj zi: i > J

0: otherwise

for i, j - 1, ..., n. The following two recurrences generate the
-6:

%4. vectors 0, y, P.

Recurrence 1:

1. Set 1n t/wn"

2. For j = n-1, n-2, ... , I set

4-47-
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rj = * j+l . V

Si=(r +

cj rj sj

j- 5j J+l

-J~ Ci j'

Recurrence 2:

1. Set -j ii* P 1 'w1 + Yi Zj

2. For jn1, 2, ... , n-il set

-Pj - (2 + si.2)1/2

-48
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4-
Yj+1  Sj j

i+l ; j i + i * i+l

" + "j+l wj+i + i+l zj+l

3. Set Pn - n

Since Ln - LCL, the J-th column of Ln is given by

n
(Ln).j Z Ljk(Lc).k

k-j

n
=pj (Le). + E (Pj wk + TJ Zk)(Lc).k l ., n.

k-j+l

Thus, Lc can be updated without explicitly forming L. Only the vectors

pq 0, y, w, z need be stored. Any fill-in is ignored.

4. -49-
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*5 11.2 PRELIMINARIES

Before discussing the computer implementation, it would be helpful

to describe how the implementation handles function evaluation, gradient

storage, and gradient estimation.

11.2.1 FUNCTION EVALUATION SUBROUTINE

The user must supply a subroutine that computes the value of the

objective function and all of the nonlinear constraint functions at a

point passed to the subroutine. Linear constraints are handled by

a" providing the coefficients as part of the gradient data. Each call to

'a the function evaluation routine results in the evaluation of the

objective function and all of the nonlinear constraints.

A smoother version of the OPCON algorithm would allow a separate

-. call to evaluate the objective function and another call to evaluate the

nonlinear constraints. This feature would be useful in problems having

all variables represented in the objective but having sparse constraint

functions. The sparse finite differencing gradient procedures of

Coleman and More (19821, discussed in the following section, would



provide more savings because the method could be applied to just the set

of constraint functions. A single non-sparse function in the set of

functions handled by the Coleman and Mbre method will result in no

savings in function evaluations. For example, if two functions of

variables of length two have gradients that are structurally zero in

opposite components, then one call to a function evaluation routine for

both functions is enough to obtain forward difference estimates for the

two nonzero components. If one of the functions has all nonzero

gradient elements, then two calls will be required. The Coleman and

More procedure exploits these relationships. If one function in a set

is not sparse, then the number of calls to the function evaluation

subroutine will be nearly the number of variables.

11.2.2 FINI TE DIFFERENCING AND SPARSE GRADIENTS

The nonzero gradient elements for all nonlinear functions are

estimated from either forward or central differencing. Since all

functions are evaluated by each call to the function evaluation

subroutine, it is worthwhile to reduce the number of calls of the

subroutine required to estimate all nonzero gradient elements. If the

gradients of the nonlinear functions were not sparse, then n calls of

the function evaluation subroutine would be required, where n is the

* number of variables in the problem. If, however, the gradients are

sparse, it is possible to significantly reduce the number of calls as

* -53-
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Coleman and More [1982] have shown. Their algorithm has been employed

in the development of OPCON.

A single value for the finite differencing interval that is used

for all variables is input to the algorithm. However, each restart of

the algorithm (restarts occur after failures to take a step) causes a

finite difference interval to be computed for each variable. This is

accomplished by a call for each variable to the subroutine, FDCALC,

developed by Gill, Murray, Saunders, and Wright [1981] for determining

good finite differencing intervals. Their procedure balances truncation

*error against the noise induced by machine evaluation of the function.

Since the step direction chosen at each iteration is the solution to a

system of equations having an estimate of the Lagrangian gradient as the

right-hand-side, choosing the finite difference interval for each

-. variable to make the finite difference estimate of the Lagrangian

. gradient reasonably accurate is appropriate. Thus, the Lagrangian

function using the current estimate of the multiplier vector is the

A." function passed to these subroutines. This is an appropriate choice

since it is the estimated gradient of the Lagrangian which is used to

determine the step direction.

As mentioned previously, it is important to reduce the number of

calls to the function evaluation subroutine in obtaining the finite

difference estimates for the sparse gradients. The sparse gradient

structure of the objective function and nonlinear constraint functions
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is processed to obtain nG groups of variables, such that the variables

in each group can be varied together to compute some of the fiftite

difference elements of the Jacobian matrix corresponding to the

gradients of these functions. Only nG calls to the function evaluation

subroutine are required to compute all the structurally nonzero entries

in the forward difference estimate of the sparse Jacobian matrix. If nG

is significantly smaller than n, then there is a considerable savings in

the number of computations required to compute the estimate. Since

central differencing is used whenever there is an indication that

forward differencing may not be sufficiently accurate, the savings can

be even more pronounced. (See Gill, Murray, Saunders, and Wright

[1981], Stewart (1967], and section 11.3.3 for further discussion of

when to switch to central differencing.)

Linear constraints are handled separately from nonlinear

constraints. The coefficients are stored in a sparse format and used to

compute function values or gradients as needed. These arrays are passed

to OPCON. Each linear or nonlinear constraint is set to be either an

inequality (<) or equality constraint. The user also sets the right-

hand-side (RHS) value of each constraint. An initial estimate of the

solution and upper and lower bounds on the variables are also passed to

OPCON.
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3 AN OVERVIEW

1.3.1ANOEVW

The following paragraphs describe in detail each of the steps

performed by OPCON in roughly the order in which they occur. A brief

* overview of the algorithm is given first.

[01 Initialize. Initialize data structures and compute function

values .and finite difference estimates at the initial estimate of the

solution.

[I) Start or Restart. Set the approximation to the Cholesky

factor of the permuted Hessian of the Lagrangian to the identity. Set

the multiplier estimates to zero. If it is a restart, then compute a

.* finite difference interval for each variable using the procedure given

*' .by Gill, Murray, Saunders, and Wright [1981].

* [2] Form the Dual QP. Form the dual to the quadratic program (QP)

solved on each iteration of the SQP method. In forming the dual QP,

consider only those inequality constraints that are active.

Iv. -*--. ~ . .. ~.



do

[3] Solve the Dual QP Using a CG Mthod. Solve for the

multipliers of the original QP by solving the dual QP that has only

nonnegativity constraints on some of the variables using a projected

preconditioned conjugate gradient (PPCG) method. If unable to converge,

then restart.

14] Compute the Step Direction. Let g be the gradient of the

Lagrangian function at the current estimate of the solution for the

primal variables and the multipliers from the QP obtained in step [3].

Then the step direction, s , is the solution of LcLc'S - where Lc

is the current estimate of the Cholesky factor of the Hessian of the

Lagrangian.

[5] Compute the Step Length. Find an acceptable step asc. The

criterion for an acceptable step is a suitable reduction in the merit

function of Han (see equation 1.6) based on a local linear model of the

problem. Set the new estimate of the solution, xn, to xc + asc . If

unable to find an acceptable step, then restart.

[6] Check for Termination. Compute new estimates of the gradients

of the objective and nonlinear constraint functions. Check for

termination. Successful termination occurs if the norm of the

Lagrangian gradient is small.
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* . [7] Update the Cholesky Factorization. Update the approximation

* - to the Cholesky factor of the Hessian of the Lagrangian using the BFGS

-. formula as given by Goldfarb [1976] but ignore any change to structural

zeros in L. If the update is unacceptable, then restart. Otherwise,

begin a new iteration by going to step (2].

The following sections discuss the actual implementation of these

steps in detail.

-~ 11.3.2 INITIALIZATION

The initialization section of the code reads in the data file

defining the problem and establishes the sparse storage structures for

the Hessian factorization and the gradients. The maximum number of

active constraints is computed based on the number of variables in the

* problem and the amount of storage allocated to the array that will be

used to store data defining the dual quadratic program. This array is

dimensioned to be very large, but it is used for storing other data

during different steps of the algorithm.

The objective and constraint functions are evaluated at the initial

point. The degree of infeasibility is computed using the following

formula:
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(1) FEAS E [ g,(xc) -RHSJ] + Z 1h~(c - RHk;J- - k-m+l

n 1. .+ E max (0.0, x i -x i , x -x ) ,
.,. ii' .l ~ l

-p..l

where the first a constraints are inequality constraints and the last

m+l, ..., m4-p constraints are equality constraints. The upper and lower
a'.'

1

bounds on the i-th variable are given by and x1 , respectively. For

j i, ... , m+p, RHSj specifies the right-hand-side value for

constraint J.

* The initial finite difference interval is set to an input value and

is used for all variables. Forward differencing is used initially.
-.J.

11.3.3 FIRST ITERATION AND ALL RESTARTS
'-a

First Iteration

On the first iteration and on all restarts, the Cholesky factor is

set to the identity and all multiplier estimates are set to zero. The

value of MAXLAM, which is used as an upper bound on the largest

multiplier in absolute value, is also set to zero.

a-5.9
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Res tart

On each restart the actions described in the preceding section are

repeated and in addition the following actions are taken. The finite

difference interval for each variable is recomputed using the method of

Gill, Murray, Saunders, and Wright [1981] that optimizes the interval

for each variable in order to make the finite difference estimates of

the gradients as accurate as possible. The method also computes central

differencing intervals. The function used is the Lagrangian function.

(During a restart, the multipliers are not reset to zero until the

* finite difference intervals are recomputed.) The method of Gill,

Murray, Saunders, and Wright is available as a subroutine called FDCALC.

Central differencing is used if FDCALC detects an error condition

or if the following inequality is satisfied for any variable:

Ci < 10m clii hi,

where m is 5 for this implementation. This test is described in Stewart

* [1967]. 10i is an approximation to the i-th diagonal element of the

Hessian of the function computed by FDCALC, hi is the optimum forward

. differencing interval computed for the i-th variable, and Ci is an

estimate of the i-th component of the gradient also computed by

FDCALC. If a gradient estimate for a variable is small relative to the
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Hessian esiae the centl difereci should beused easuh

forward difference estimate is unlikely to be very accurate.

11.3.4 FORM THE DUAL QP

Recall from Part I that the step direction computed at each

-- iteration, sc, is the solution to the following quadratic program:

min Vf(xc)'s + (l/2)s'L L 's
5~ c

N-

.4% subject to Vgj(xC)'s + gj(xc) 0.0, J-, ..., M9

Vhk(xc)'s + hk(xc) - 0.0, k-m+l, ... ,M+p

-, C + si 4 x , i-1, ..., n,
'% 44

where Lc is the current approximation to the Cholesky factor of the

Hessian Lagrangian. By transforming to a dual problem a much simpler

quadratic program can be solved. In order to make the dimension of the

dual problem as small as possible, only active or nearly active

constraints are considered. Equality constraints are always included.

Any upper- or lower- bound constraint on a variable, xi, will be

included if the constraint is violated or if the current value of the

variable is within BNDV*(xu - x) units of either the upper or lower
** 4,.4
,, bound. BNDV is an input parameter and is typically 5xlO-4 . An
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inequality constraint is considered active if the constraint is violated

or if it is within ACTV units of being violated, where ACTV is another

input parameter and is chosen to fit the scaling of the problem. It is

important to properly scale the constraints since this criterion is

applied to all the inequality constraints.

The dual quadratic program (see section 1.3.1) is

(2) min (I/2)u'M'Mu + u'q
U

subject to uj > 0.0,

where the i-th column of M corresponds to an inequality constraint. Let

the active constraints as defined in the previous section be numbered

from 1 to p', including any active upper- or lower- bound constraints.

Then the J-th column of M is the solution, y, to Lcy M Vgj(xc), where gj

can be either an equality or inequality constraint. This is a sparse

triangular system of equations that is easily solved using a sparse

forward substitution method. Vector q is given by q - M't - g(xc) + RHS

where t is the solution to Lct Vf(xc) and g is the vector of

-62-
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active constraints. Again, a sparse triangular system is solved to

obtain the vector.

As long as M has full column rank, which will be the case as long

as the gradients of the active constraints are linearly independent and

Lc is nonsingular, M'M, the matrix defining the dual quadratic program,

will be positive definite and a solution to (2) will exist. If the

gradients of the active constraints are not linearly independent, which

will be the case if there are more active constraints than variables in

the nonlinear program, then (2) cannot be solved with the CG method

described in the next section. The algorithm recognizes when there are

more constraints than variables and takes the following action. A value

of c is added to each of the diagonal elements of M'M, where e is a

small(1O-5) positive number input to OPCON. .This is a perturbation to

the original problem, which allows the algorithm to continue making

progress when far from a solution (see section 1.3.1). It is expected

that the number of active constraints near the solution will be equal to

or less than the number of variables.

11.3.5 SOLVE THE DUAL QP USING THE PPCG METHOD

The basic method for finding the solution to the dual QP using a

projected preconditioned conjugate gradient (PPCG) method is given in
0.

section 1.3.3. The computer implementation follows the steps given in

the description, with a few exceptions.

I-
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The discussion here refers to the following quadratic program:

is (3) min (1/2)u'Ku + k'u:' u

subject to ui ) 0.0 for i e IINEQ

where IINEQ is the set of indices corresponding to the inequality

constraints considered active in (1.1) and K - M'M or K - M'M + eI and

k- q.

The exceptions include using an error tolerance to determine

A.' whether the system is ill-conditioned or nearly singular, passing

through the algorithm the first time using a weak optimality criterion

followed by a restart with the required criterion on the norm of the

-.. residual, and scaling the K matrix to speed convergence.

Checking for Ill-Conditioning in K

'-.

The value of uj'Kjjuj is computed during each conjugate gradient

iteration where the subscript, J, refers to restricting attertion to a

subset of the variables in (3). If uj'gjjuj/uj'uj is small, then K is

nearly singular or ill-conditioned. If this condition is detected, a

0 flag is set and an attempt is made to solve the perturbed problem to be

described shortly.

A
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Scaling the Dual QP Matrix

Before the PPCG algorithm is initiated, the matrix K is scaled as
1 c . Ks, where S is a diagonal matrix with Sii - (IK.iI 2) 112 . The

problem actually solved is

min (1/2) v'KSCMV + v'Sd
v

subject to vi > 0.0 for i. IINEQ.

The solution, u*, is given by u* - Sv*, where v* is the solution to the

scaled problem. Tests on the residual norm are always made relative to

the unscaled problem to ensure that the error tolerance is satisfied for

the desired problem. The initial estimate of the solution to the scaled

problem is set to v ° 1 S-l u °, where u ° is the last estimate of the

multiplier vector corresponding to the currently active constraints.

Perturbing the Dual QP

*If the algorithm is unable to converge after an input number of

iterations or if K appears to be singular or ill-conditioned, a small

value, e, is added to each of the diagonal elements of KSCAL and the

4 algorithm is restarted with the multipliers reinitialized to the zero

vector. The small value added is an input parameter and is usually on

* the order of 10- 5. This procedure has an effect similar to that
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discussed in the steps taken to form the dual QP when there are more

active constraints than variables.

If the CG algorithm fails to converge, OPCON will restart.

11.3.6 COMUTE THE STEP DIRECTION

After computing the new estimate of the multipliers the new step

direction, sc, is obtained as the solution to the equation:

m m+p n
- LcLc'S - -{Vf(xc) + Z ujVgj(xc) + E vkVhk(xc). + Z * wiei}

j-1 k-m+l i-l

. Any multipliers associated with inequality constraints considered to be

inactive are set to zero. The multipliers for an active upper- or

S". lower-bound constraint on the variable xi, wi, will be positive if the

upper bound is active and negative if the lower bound is active. This

sparse set of equations is solved using the sparse code of George and

e 4 Liu [1981].

4-6%"-.:*
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1 *-3 3.6 COMPUTE THE STEP LENGTH

OPCON will not accept a step unless the step results in a

sufficient decrease in the Han merit function (see section 1.4). Let

I * FEASO be the sum of infeasibilities as given by (1) at the current

estimate of the solution, xc. The current value of the merit function

is then

PR1O - f(xc) + MAXLAM - FEASO

where MAXLAM is an upper bound on the maximum of the absolute values of

the multipliers. For 0 < a 4 1, evaluate (1) at xc + asc and define the

value as FEASN. The step, as , will be accepted if

PHIN - f(xc + asc) + MAXLAM e FEASN < PHIO + aa - PHISLP.

" - The test is made less strict by setting 0.01 < a 4 0.5. The slope of

the merit function is approximated by PHISLP, which is computed as

follows:

m m+p n
PHISLP = f(xc)'sc + MAXLAM { G Gj(xc) + E H-(x c ) + H Sl}

jinl k-m+l iEi

where for inequality constraints (see section 1.4)
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0: gj(xC-)<RHSj or [gj(xc)-RHSj and Vgj(xC-)tsc 4 0.0]

Gj (xC)

Vgj(xc) 'sC: otherwise

for equality constraints

V -Vhk(xc) ,s: hk(xC)<RHSk

Hk(xc) Vhk(xc) sC: hk(xC)>RHSk

I hk(xc),sCl: hk(xC)-RHSk

* and for upper- and lower-bound constraints

Si., si: x > xi or Ix- x and sc > 0.0]

-s x < or (x and sc < 0.0].

The first trial value of a is 1 . If this is not an acceptable

step, then a is reduced by a constant factor less than one. This

procedure is repeated until an acceptable step is found or until the

number of trial values exceeds an input value, usually 8 to 16. If an

" acceptable step is not found in the allotted number of iterations, the

algorithm will check the smallest value of the merit function obtained

* during any of the iterations. If this value is smaller than the value

of the merit function at the current estimate, the algorithm will take

-68-
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the step corresponding to the smallest value, then the algorithm will

restart. No step is taken that does not improve the merit function.

.

"A" 11.3.7 CHECK FOR TERMINATION

After a successful step has been taken, an approximation to the

gradient of the Lagrangian is computed using the current estimates of

the multipliers and new finite difference estimates of the gradients of

the objective and constraint functions. If

7Ix l(n, un, vn)I/max( 1, lf(xn)l)

is less than the tolerance specified for stopping, the algorithm will

terminate.

The algorithm will also stop if the step taken has norm less than a

specified value, usually 10-9 . The algorithm will terminate, indicating

a failure if, the iteration after a restart results in a failure since

another restart would result in the same failure.

11.3.8 UPDATE THE APPROXIMATION TO THE HESSIAN OF THE LAGRANGIAN

The updating of the approximation to the Hessian of the Lagrangian

function follows the procedure described in section 1.5, with the

exceptions noted below.

"- 69-
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Recall that y - VxI(xn , un, vn) - Vx(xC, un, vn), where xn and xC

are the new and old estimates of the solution, respectively, and un and

vn are-the vectors of multipliers. Let s - asc be the actual step

taken. The BFGS update will not be positive definite unless s'y > 0.

We follow the suggestion of Powell (1978] of setting y to

•y + (1 - e)Hs

where e - 0.8(s'Hs/(s'Hs-s'y)) if s'y < (0.2)s'Hs in the formula for the

BFGS update of the approximation matrix H. This will guarantee that the

update is positive definite even if, originally, s'y was close to zero.

If either s'y/sJlyl or s'Hs/Isl 2 is small ( < 1- 5), the algorithm

will restart since these are signs that the Hessian approximation is not

good. If lyl/l~xt(xn, un, vn)I is small, there will be no update but

the algorithm will not restart.
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-I 11.4 PERFORMANCE OF OPCON

11.4.1 TEST PROBLEMS

It is difficult to find in the mathematical programming literature

large-scale nonlinear programming problems suitable for use as test

problems. Yet the performance of a large-scale algorithm on small, but

well-known, test problems is an important part of evaluating the

algorithm. This section describes the performance of the OPCON

algorithm when solving eleven test problems, seven of which appear in

the literature. The other four were either created by the author or

obtained from unpublished sources. Of these latter four problems, one

has 32 variables and the other three each have 60 variables. They are

considered helpful in assessing the performance of a large-scale

nonlinear programming algorithm.

Two problems were obtained by adding a set of ten nonlinear and

five linear constraints to two well-known unconstrained optimization

problems (Buckley and Lenir [1983]). These two problems are highly

nonlinear and non-convex. The interiors of several degenerate

ellipsoids are excluded from the feasible region by some of the



.0O -

constraints. Since the unconstrained minima are contained in the

excluded region, the problems are strongly nonconvex. Since these

problems were created for this paper, we are unable to compare their

2.V solutions with any solutions obtained with other algorithms.

Also included in the set of test problems is a weapon-allocation

..- ~problem having a single linear constraint and non-negativity constraints

on the variables; an economic model of OPEC oil prices that has 10

nonlinear constraints and 40 linear constraints. Each of the eleven

test problems is described in Appendix A.

11.4.2 TEST RESULTS
1*.

The problems were run on a VAX 11/780 minicomputer using double

.., precision for all noninteger computations. The compiler option that

stores double precision numbers in a format allowing a dynamic range of

10- 307 to 10+3 0 7 was selected. Table 1 summarizes the test results.

The tolerance for successful termination was set to 10-5 for all

problems. The CPU time (in seconds) is the execution time of the

program for each problem and does not include compilation or linking

-time. The total number of function evaluations and CG iterations are

given. The number of each type of constraint -- nonlinear, linear, and

upper- or lower-bound - is given, followed by the number considered

active at the time the algorithm terminated. The norm of the Lagrangian

gradient and the sum of infeasibilities are also given. The number of
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times the CG algorithm failed to converge and the number of times an

improved value of the merit function could not be found are also given

for each problem. The total number of restarts is also shown.

All eleven problems terminated successfully for the termination

tolerance given above. Even though the OPCON algorithm is not

specifically designed to solve problems having linear constraints, it

did perform well on the oil price model and tolerably well on the

weapon-allocation model.

As noted earlier, one of the problems that must be handled by the

algorithm is the possibility of M'M being singular or nearly so due to

having more active constraints than variables or gradients of active

constraints that are nearly linearly dependent. The algorithm handles

this problem quite well. The eigenvalues of M'M were computed for each

iteration for all of the test problems. Condition numbers ranged up to

109 . The ill-conditioning seldom caused the CG algorithm to fail. The

accuracy of the multiplier vector obtained under such circumstances is

questionable; however, the algorithm almost never failed to take a step

after solving these ill-conditioned problems.

It is interesting to note that the average number of CG iterations

per main iteration for each problem is only slightly more than the

number of active constraints (the order of the dual QP solved by each

call to the CG algorithm) indicating the efficiency of solving the dual
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and starting with the last estimate of the dual variables. The number

of function evaluations seems high until one considers that finite

differencing was used to compute all gradients. In some cases central

differencing was used, which increases the number of function

evaluations.

11.4.3 PARAMETER VALUES

In the process of obtaining these test results, it was found that

the values of several of the input parameters are particularly critical

to the successful termination of the algorithm. The choice of 0.1 for

the step-length parameter, a, was found to be quite good for most

problems. Smaller values sometimes allowed the algorithm to drift,

while larger values tended to cause more step-length iteration failures

and'hence considerable more computational effort since each failure

causes a restart.

The convergence criterion for the norm of the residual in the PPCG

algorithm was normally set to 10-12. Larger values produced estimates

of the multiplier vector that were sometimes not accurate enough to

r obtain a good step direction, whereas smaller values caused more CG

iteration failures with no compensating improvement in performance. The

relaxation parameter for the SSOR preconditioning step was set to 1.3.

F This value gave good performance while larger values typically took more

iterations of the CG algorithm to converge.

V V.-
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Best choices for the parameters, BNDV and ACTV, used to determine

whether an upper- or lover-bound constraint or a general inequality

constraint should be considered active are very much problem

dependent. A choice of 1.0 for ACTV and 0.0005 for BNDV was normally

acceptable, but for some problems different values were used. For

example, ACTV was set to 0.05 for the Proctor-abepolmndt0.

~' for the Hexagon problem. The BNDV parameter was set to 0.005 for the

weapon-allocation problem, to allow it to pick up zero allocations more

quickly. If BNDV or ACTV is set to too large a value, constraints not

active at the solution may continue to be considered active when the

algorithm gets close to a solution. In this case, it is possible that

more constraints will be active than there are variables in the problem,

and the need to solve the perturbed problem near the solution may hinder

convergence.

11.4.4 FULL HESSIANS VERSUS SPARSE HESSIANS

One issue of major concern during the development of this algorithm

was the degree to which ignoring fill-in in the BFGS update would

degrade the performance of the algorithm. Table 2 shows the results of

comparing full and sparse Hessian matrices on a subset of the test

.k % problems. Fill-in was not ignored for the full Hessian runs. The table

shows the degree of sparseness fot each problem. The termination

criterion was set to 106 to force a more stringent comparison.
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The value of this comparison is limited, considering the size of

the test problems used. The results suggest, however, that the

practical penalty for ignoring fill-in is minimal.

11.4.5 COMPARING OPCON TO MINOS 5.0

MINOS 5.0 is a well-known implementation of the projected

Lagrangian algorithm developed by Murtagh and Saunders [1982]. The

interested reader should consult the user's guide for MINOS 5.0 (Murtagh

and Saunders [1983]) to obtain a full description of the features of the

code. Performance of OPCON and MINOS 5.0 on several of the test

problems is summarized in table 3. (Timing data for MINOS was obtained

from the same VAX 11/780 system described earlier.)

MINOS is clearly superior to the current version of OPCON for

problems having nearly linear constraints, such as the weapon-allocation

problem and the World Bank problem. For problems that are highly

nonlinear, especially in the constraints, OPCON is as good as MINOS and

often much better. MINOS, for example, was unable to achieve any

significant progress on the modified Powell singular function problem,

whereas OPCON manages to find a feasible solution having a much improved

objective function value. The Colville no. 2 problem has considerable

nonlinearity in the objective function and constraints, but ten of its
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TABLE 3. OPCON VS. MINOS COMPARISON
OPCON MINOS i

Function CPU Function CPU
No. Problem name evaluations time (sec) evaluations time (sec)

3 US Steel No. 1 21 1 59 3

4 US Steel No. 4 236 4 181(1) 5

5 Hexagon 114 5 287 7

6 Wong No. 2 179 3 1,836 23

7 Dembo No. 1 570 16 3,945 1,711

8 Colville No. 2 1,130 52 678 15

9 Weapon Allocation 3,993 286 1,398 24

10 World Bank 248 83 1,214 27 I.

11 Mod. Powell Sing. 10,565 596 (2)

(1) MINOS found a worse solution than the one found by OPCON.
(2) MINOS was unable to solve this problem.

II
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15 variables appear as linear variables in all constraints and the

objective function. As a result of its explicit handling of linear

variables, MINOS did outperform OPCON on this problem.

.NI
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9-.' 11.5 CONCLUSIONS

Based on the results given in the preceding section, the OPCON

algorithm shows promise of be ing a practical tool-for solving large-

scale nonlinear programs. obviously, problems with 60 variables are not

large; however, the scarcity of problems in the literature having even

half as many variables would indicate that these results are

'a; significant. Also, some of thesetest problems -- i.e., the U.S. Steel,

Colville, and Dembo problems - are very difficult to solve in spite of

their smallness. It is hoped that the algorithm will soon be applied to

-- larger problems that would allow a more realistic evaluation of its

'9 ability to solve large, sparse nonlinear programs.

Because it uses an active set strategy and solves a dual problem,

*1* the algorithm should be able to deal with large numbers of nonlinear or

linear inequality constraints since the size of the dual problem is

determined by the number of active constraints. The current version of

the OPCON algorithm stores the M matrix -- which has n rows and p'

columns, where n is the number of variables in the problem and p' is the

number of active contraints - in a dense format. This array is the

limiting factor on size. It may be possible to store this array in a

"AV
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sparse format (see section 11.3.4).

The coded version of the algorithm described here is not as

efficient as it could be. The calculation of the eigenvalues of the M'M

matrix is, for instance, unnecessary. Also, the function evaluation

routine evaluates the objective and all nonlinear constraint functions

on each call. As discussed in section 11.2, a more efficient version of

* the code would split the objective function evaluation off from the

nonlinear constraint function evaluations. This would allow a more

efficient use of the technique of Coleman and More 119821 for reducing

the number of function evaluations required to obtain finite difference

estimates of sparse gradients.

Several questions remain unanswered. How well the algorithm will

work for solving really large, practical problems is probably the most

interesting of these. Other questions of interest include determining

* the effects of the errors in the estimates of the gradients and the

deviation from the BFGS update when fill-in in the Cholesky factor is

ignored on the performance of the algorithm on large-scale problems. It

would be comforting to know what conditions are required to guarantee

the convergence of the projected CG algorithm described earlier.

The step-length control procedure is simple, and it may be possible

to improve the performance of the algorithm by improving this
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4.

procedure. For instance, an adaptive procedure that would allow step-

length parameter, a, to be greater than 1 could produce better results

V on problems having singular or nearly singular Hessians.

The development and testing of an extension of the sequential

% quadratic programming algorithm for solving large, sparse nonlinear

programs has been presented here *The test results indicate that the

algorithm has the potential to be a practical tool for solving problems

having highly nonlinear objective and constraint functions.
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The test problems used to evaluate the nonlinear optimization code

developed for this paper are described in this appendix. Mathematical

formulations are given for the problems having a small number of

variables. A FORTRAN listing for the coded problem is included for each

problem. Termination data reported for each problem includes the

objective function value, f(x*), the norm of the gradient of the

Lagrangian, e(x*), and the sum of the infeasibilities, r(x*). The

starting points for each problem, the value of the objective function at

the starting point, and the sum of the infeasibilities at the start are

also reported. The best reported result by any other algorithm is also

included.

A-2
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(1) Betts Problem

Reference: Hock and Schittkowski [1981], problem no. 53

min f(x) - (xl - x2 )
2 + (x2 + x3 -2)

2 + (x 4 - 1)2 + (x5 - )2

subject to xi + 3x2 - 0,

x3 + x4 - 2x5 = 0,

x x2 - x5  0.

Starting point: x° - (7, 2, 6, 1, 2)',

f(x°) - 62.0,

r(x°) - 16.0.

'S Results:

Reported

OPCON results

f(x*) 4.093023256 4.093023269

e(x*) 2.8E-10 2.17E-04

r(x*) 0 4.83E-15

A-3
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3UZROUW:NE PNCVAL(ZF)

32-4. '3 PROBLEMI.
-~ C

DOUBLE PRECISION Z(1),t(1),ONl,TWO
DATA ONS.TWOII.ODO,2.ODOI

RETURN

END

-A-
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[2] Proctor and Gamble Problem

Reference: Himmelblau [1972] problem no. 11

min f(x) - 5.3578547 x32 + 0.8356891 XlX5 + 37.293239 x,

:: subject to

0 4 85.334407 + 0.0056858 x2x5 + 0.0006262 xlX4

-0.0022053 x3 x5 4 92

90 4 80.51249 + 0.0071317 x2x5 + 0.0029955 xlX2

+ 0.0021813 x32 110

20.4 9.300961 + 0.0047026 x3x5 + 0.0012547 XlX3

+ 0.0019085 x3x4 4 25

"?.' 78 4*xi 4 102

33 4 x2 4 45

27 4 x3 4 45

27 e x4 4 45

27 4 x5 4 45

Starting point: xo (78.62, 33.44, 31.07, 44.18, 35.22)',

* f(x°) - 10418.2

r(x°) - 0.0.

A-5
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. a. Re sult. :

. Reported

" OPCON results

f (x*) 10126 .60285 10126.64100

A,' e(x*) 4.05E-4 Not reported

Sr(x*) 1.60E-11 Not reported

S__.
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3U3101J?:NZ FNCVAL Cl.!)
C

.dV -. PROCTOR-GAMBLE CO. - IMIMELBLAU PROBLEM NO. 11.

C
DOUBLE PRECISION I(1),F(I),A(3),B(4),C(4),D(4)

DA."4A A/5.33573547,0.9835689,.37.23393/
DATA UhI5.334407,5.6858D-3,&. 262D-4,-Z.20530-3I
DATA CJ80.5I24V,7.1317D-3,2.V955D-3,2.1813D-3/
DATA D/9.30096,4.702&D-3,L.2547D-3,1.1085D-3/

C
TCI~A(1'1(3"2 A(2)'1( 1)*1(S) +A(3)21( 1)

C

F(5)n-F(4)

F(7)N-F(')

RETURN
END
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[3] U.S. Steel Problems

References: Himmelblau [1972], problem no. 22; Hock and Schittkowski

(1981], problem nos. 95-98.

6
mn f(x) c ixi

i=1

subject to

6
" ajXj + b~xlx 3 + b2x3x5 + b3x4x5 + b3x4x5 + b4x4x6

i1l
+ b5x5x6 4 B1

6
Z a12xi + b6xlx 3 + b7x4x5 + b8 x 4 x6 + b9x5x6 ( B2

66 a13x i + bloX4X5 4 B3

i-l

6
E a14xi + bllxlx6 4 B4
i-I

The [a..] and [b.] coefficients are given in the listing. Four problems

are defined by the [B.]:

A-8
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Problem B1  12 3 4
1 -4.97 +1.88 +29.08 +78.02

2 -4.97 +1.88 +69.08 +118.02

2 -42.97 -5.88 +69.08 +18.02
3 -32.97 -25.12 +29.08 +78.02

4 -32.97 -25.12 +124.08 +173.02

0 < x1 c 0.31 0 4 X4 < 0.0
42

0 < 0.046 0 x5  0.028

0 < x3 4 0.068 0 < x6 4 0.0134

All four problems were solved by scaling the variables as follows:

Scale x, by multiplying by 10; scale the other five variables by

multiplying by 100.

Starting points:

For all problems x° - 0.0.

For problem 2 f(x°) - 0.0 and r(x°) - 4.97.

For problem 4 f(x° ) - 0.0 and r(x°) - 58.09.

Results:

Problems 1 and 2 have the same answer ab do problems 3 and 4;

therefore, only two sets of results are given.

A-9
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Reported

OPCON results

Problems 1-2

f(x*) 0.01561952525 0.015619514

e(x*) 5.80E-05 0

r(x*) 6.17E-16 2.1E-09

Problems 3-4

f(x*) 3.135809123 3.1358091

e(x*) 3.31E-09 0

r(x*) 1.89E-14 0

A-106o
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3U3ROUT!NE FNCVALCZF)

* - C 'J STEEL PROBLEM - JIMNELBLAV NO. 22.
C SCALED VERSION.

-: C
- DOUBLE PRECISION ()(1

:NXTEGER I,NVAR
DOUBLE PRECISION A(6,4),B(11),C(6),DDOT,SCALEC&)

* DATA WVARM6
* DATA SCALZJI.OD1,5*1.0D2l

DATA C14.300,3.1SDI,6.33D1,1 .5SD1 ,.85D1,4. 7D01
4-. DATA AI-17.IDO,-38.2DO,-2. 04D2,-2.123D2,-6.234D2,-1.4955D3,

O.DO,2.73D2,0.DO,7.ODI,8.19D2.0.DO,-1 .599D2,3.I1D2,
+ .D0,-5.&7D2,-3.91DZ,-2.I198D3J

DATA 1J1.692D2,3.58D3,3.8lD3,1. 55D4,2.43D4. I.39D2..4503,
I .6&D4,1. 72D4,-2K6D4,l .4D4l

C
DO 10 ImINVAR

*11 CONTINUE
C

F( 1)DDOT(NVAI.C, 1,1,1)

F(4).DDOT(NVARA(1,3),1.Z.1),I(10)*Z1)I3,(2(1(5),

-J Do 20 Ial,NVAR
ECI)mSCALECI)tZCI)

20 CONTINUE
* C

END

Z
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[4] Hexagon Problem

References: Himmelblau (1972], problem no. 16; Hock and Schittkowski

[1981], problem no. 108.

min f(x) - -Xlx4 + x2x3 - x3x4 + x5x4 - x5x8 + x6x 7

subject to

x32 + x4
2  1

x52 + x6 1

xi + (x2 - x9)2 <j

(x 1 - x5 )
2 + (x2 - x6)

2 4 1

(x 1 - x7 )
2 + (x2 - x8 )

2  1

(x3 - x5) 2 + (x4 - V6)2 < 1

(x3 - x7) + (x4 - x8)2 1

x72 + (x8 - x9)2 < 1

x2x3 - xlx4 < 0

-x3x9 ( 0

XsX 9 €0

x6x7 - x5x8 4 0

0 x9 € 1.

Starting point: x = 1.0, 1 - 1, ... , 8, x9° .9,

f(x°) = 0.0,

r(x° ) - 2.92.

A-12
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Results:

Reported

OPCON result

f(x*) -1.732050808 -1.732050808

e(x*) 2.63E-08 3.9E-10

r(x*) 2.37E-13 3.3E-12

1
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I. 3UBROUTINE rNCVAL(K,F)• C

c XIMMELBLAU PROBLEM NO. 16 - HEXAGON.
C

. OUJLE PRECISION X(1),F(1)

Vc~F(I)m-F(1)
.. ~F 2 )aZ(3) "t2 e( 4 )"l

2:. F(3)uZ(5)t"2 Z(6 )"Z

.'.i F6).(X(1)oIC7) )t'Z4(X(2)-..Z() )t"1

.. FCS)sCZ( 3)-Z(7)) s 2+(Z(4)-Z(I))**2

- . F(10)uel) *1(3)-IC1) tX(4)
S. FC1 l)u-X(3)tIX(?2

*p F(13)u1C6)'XC7)-I(5)'ZC8)

5-< C

RETURN

.5- END

4A-1

J-
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[5] Wong Problem No. 2

Reference: Hock and Schittkowski [1981], problem no. 113.

min f(x) - X2 + x22 + 1112 - 14x, - 16x2 + (x3 -10)2 + 4(x4 - 5)2

+ (x5 - 3)2 + 2(x6 - 1)2 + 5x72 + 7(x8 - 11)2

+ 2(xg - 10)2 + (xlO - 7)2 + 45.0

subject to

3(x1  2)2 + 4(x2 - 3)2 + 2x32 - 7x4 4 120

5x,2 + 8x2 + (x3 - 6)2 _ 2x4 4 40

0.5(x - 8)2 + 2(x2 - 4)2 + 3x 52 x6 c 30

X12 + 2(x2 - 2)2 + 2XlX 2 + 14x 5 -6x 6 C 0

-3xI +6x2 + 12(x9 - 8)2 -
7x1o 4 0

4xI + 5x2 -3 7 + 98 105

1OxI - 8x2- 17x 7 + 2x8 ( 0

-8x, + 2x2 + 5x9 - 2xio 4 12.

Starting point: x0 i - 0.0, i - 1, ... , 10

f(x°) - 1352.0

r(x°) - 810.0.

A-15
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Results:

Reported

OPCON result

f(x*) 24.30620907 24.3062091

e(x*) 1.40E-05 1.2E-09

r(x*) 7.70E-10 4.6E-I0

.16
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CC

DOUBLE PREC131ON I(1),F(1)
C
C PROBLEM: WONG NO. 2; FROM HI AND 3 0113 P. 122.
C.

DOUBLE PRECISION TENP

7ZMfPoE( 1)"2,(2)(I) 'Z(D)*2)-14.ODO()-O.6D1'2.0Z3*-
S CZ(2)-1.(4)"Z24O~(C)SOO",ZS-.OO"

* 1~.DO(I()**2.ODODtZ,5.OOZ(3),2,7)*-Z.aa(EI)*1 10)23.O

FC3) sTEX?

S Z.Wn(5.OD-1 .001"2)-.cc)-7.ODO)"2,)4.uI**2

C

TEZMPv.a'R-.ODO).D*2,4).GDO*(R(2)-3.aDO)*232,.000fZ(1)2

PC 2) sTMN

C SUR
TN~u.D'()2SOO'C)(()6OOa'-k~'C)..

?(3) ATE7



* [6] Dembo's Problem no. LB

References: Dembo [1976]; Sandgren [1977], problem no. 17

11

subject to

'S
clx + c2x2 + c3x3 + c4x4x5 ( 1.0

x 5 6

- C5xl + c 6 x2 + c 7 x3 + C8x4x12 + c9 + c1O -
12 12

+ cllx 7xl2 + cl2x4x5 + c1 3 x12  + cl4x2x4x5

x x x1O
-+ c15 -+ c16 - 1.0,

x4x12 12

cl7X 1 + cl8x 2 + cl9x3 + c2 0x4 + c21x5 + c2 2x6 +,c23x 8

+ c24x4x5 + c2 5x2x5 + c2 6x2x4x5 + c27
4

* + c2 8x9 + c2 9xlx9 + c3 0x1 1 4 1.0,

0.1 4 x < 100.0 1 1 -, ... , 12.
AL

A-I18
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Starting point: x0i - 4.0, i - 1, ... , 12,

f(x°) - 0.22768,

r(x°) - 15.114.

This problem was solved by scaling the first 11 variables by

multiplying each by 10.

-',

Results:

Reported

OPCON result

f(x*) 3.169024101 3.1682133

e(x*) 3.33E-04 --

r(x*) 0.0

This is a difficult problem that OPCON has not handled very well.

It is a geometric programming problem that is poorly scaled. OPCON

required 300 iterations to achieve the results shown, and the optimal

values for the variables are not as close as one would like to those

-reported by Dembo [1976].

A..._
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3IJRROUTINE rNCVAL CI, F)

DENO PROBLEM NO. I FROM SANDCRENS THESIS.

DOUBLE PRECISION ()F)

DOUB3LE PRECISION TXMP,TEMPI.IPSONEoTZ
DOUBLE PRECISION B,A(11),CC30)
DATA EPS,ONE.TENII.OD-15..DO.1 .ODlI
DATA 3,A1i.GD5,l.131?2D-3,Z.270927D-3,2.4S546D-3.4 .6700,

DATA CJS.367373D-Z,2. 1863746D-Z,9.7733533D-2K,6.694O8O3D-3,

C

IC ) IC ) TE

If CZCI).GT.EPS) THEN
TEMP~uZ( I)

ELSE
TEMP~mIPS

END) I F

F(I)=TENP

FC2)nTEN*CC(1)'IC1),C(2)'1C2),CC3)*Z(3),C(4)'1C4)*ZCS)-ON)

FC)TN(C)*ZI),C6)*Z()CC)14tI()C(ZIC)*IC 1).Z5)

CC ) 1C4t)a)C1)Z()ZS (1)

C
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.;

[7] Colville's Problem No. 2

References: Sandgren [1977], problem no. 14; Hock and Schittkowski

[1981], problem no. 117; Himmelblau [1972], problem no. 18.

10 15 15 15
min f(x) Z bixi + E E ci..O,0 j..O xix + 2 Z d xj3

i' i -I1l i-1l J-l

subject to

15 10
cj,.-2- xZ + E aijxi - 3dXO 2 < O.Oj, J 1, ... , 5,

-2 1c-0JX i-lij xlj

See the listing for coefficients.

Starting point: xo - 0.001, j - 1, ... , 15, J # 7;

x°7 - 60.0,

-:9;-* f(x°) - 2400.1053,

r(x° ) - 0.0.

A-2 1
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Results:

Reported

OPCON result

f(X*) 32.34867897 32.348679

e(x*) 2.21E-05 3.5E-05

-yr(x*) 6.20E-14 0.0
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3UIROU7 INS FNCVAL CX, )
C
C :OLVILLES PROBLEM NO. 2
C

DOUBLE PRECISION IC1),F(1)
C

:NECEZR I,J
DOUBLE PRECISION ZERO
DOUBLE PRECISION B(1O).C(5,5),D(5),A(10,5),D1.C1,CIDI
DOUBLE PRECISION RI4S(5)
DATA ,D..D..D1.DD0.DD1.D -. O-./
DATA Dl4.DO.5.DO,1 .D1.6.D0,Z.D0/
DATAC1.l-ZD -IDI.D,-.1-.I..D-.D-3D,

DATA A~AI0D,3SO0D..02D,1D,1D, 0,.0

+. 0.D0,0.D0,2.D0,0.D0,-2.D0,-4.DO,-1.DO,-3.00,3.D00,1.DO,
+ 1.DO0,4.D0,0.DO,-4.DO.1 .DO,0.DO,-1 .DO,-2.DO,4.DO,1.DO,

DATA RHSIIS.0,27.4,36.0,1a.0, 12.0/

DATA ZEROJS.DOI

BlZZERO
V. DO 10 151,10

10 CONTINUE

cawZERO
DO 30 Ji.I15

DO 20 1.11,15 -1)EI'(J

28 CONTINUE
*30 CONTINUE

C
DIZZERD
OI 4 Ju11,15

.1~*40 CONTINUE
C

C
* - 00 100 Jet's

ClaZERC
DO s0 1.11,15

ClmCL+CCI-10.J)*l(I)
* 51 CONTINUt

CZIZRO

CZAC2+A(I ,J)*Z( I)
60 CONTINUE

* C
F(J+I1)uRISCJ)-2.DO*CI + C2 -3.DO*D(J,YZ(341)"2Z
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0
LOG CONTINUE

C
RETURN
END S

.p-.

~4

0
a,..

a'.

* .p.

a, ~

V.

- (

0

V

F.,
F"

a'

4k
0

/
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[8] Weapon-Allocation Problem

S".References: None.

6 7 ijxi /nj

' min - E n, 1 (1 i )i
J.1 i-.

7 6
subject to E ci  Xj 4 4900

1-1 i-i

•xii > 0, 1 =1, , 7, j =1, , 6.

Data:

Pj

Weapons

1i/ 2 3 4 5 6 7

_ Targets 1 .50 .58 .42 .42 0 0 0 5

2 .30 .31 .37 .36 .19 0 0 40

3 .10 .12 .20 .30 0 0 0 55

4 .05 .05 .07 .07 0 .40 .45 18

5 .68 .68 .68 .61 .77 .59 .90 18

6 .43 .43 .35 .29 .41 .75 0 70

c 12 12 12 15.6 21.6 3.5 21.3

*," A-25
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This is a weapon-allocation problem where xij denotes the number of

weapons of type i to be allocated to the class of targets of type J.

The objective function is the negative of a utility for a given

allocation. The constraint is a volume constraint on storage. It would
.-

also be a cost constraint. The variables corresponding to Pij being

zero are not considered in the optimization, so there are only 32

variables in the problem.

Start: Xii - 2.0 for all i and J,

f(x0) -- 29.535,

r(xO) n 0.0.

Result:

OPCON

f(x*) -167 .7054586

e(x*) 1.37E-02

r(x*) 1.02E-12

This problem is difficult because it takes a long time to determine
O
- which variables are nonzero (eight are nonzero at the solution). Also,

convergence is slow.

A-26
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3ZRROUTNE PNCVAL CI, F)

C 71I43: A WEAPONS ALLOCATION PROBLEM.
C

2OUBLE PRECISION ICZ),F(1)

C
:NRZGZa TARGET( 32) ,TARDEX, I, J

0 DOUBLE PRECISION PX(321',TEJPPXCUN(6),NTAR(t)
V..' C

DATA NTARiS.0,40.0,55.0,18.0, 18.0,70.0/
DATA P/5,3,1,O.~,4,5.3,l,0,6,4,4,.7

DAA+ ACT 4, ,,, ,.,,,,,,,,,45~123456236

C
DATA ZlUO,ONE/0.0D0,z.ODO/

C

a. PKCWI( J) sONE
4.0 CONTINUE

DO 20 1=1,32
TARDEZ.mTARCETCI
PKC1JI'(TARDEX)PCU(TARDE)(ONE-PX(I))**((iC)/NTAR(TARDEI))

20 CONTINUE
C

TIXPuZERO
DO 30 Jul,&

?ENP=?EJIP.NTARCJ) '(PXCUJE(J)-ONB)
30 CONTINUE

RETURN
D

Ado

0**A-27
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[9] World Bank Oil Price Model

* References: None (this problem was obtained from A. Drud of the World

Bank).

Let

Pi - oil price in year i/lO.0,

tdi - total demand for oil in year i/10.0,

si - supply of oil by non-OPEC countries in year i,

csi - cumulative supply by non-OPEC countries in

year i/10.0)

d - demand for OPEC oil in year i/10.0, and

r. - OPEC reserves of oil in year i/100.0.

OPEC oil revenue in year i is given by

10.0 di(10.O Pi - 2 .5/ri).

OPEC wants to maximize discounted oil revenue over 10 years.

"-0i

.in f(x) - - 10.0 di(10.0 p 2.5/r

A-28



,

subject to

10.0 td1 - 8.7tdi + 1.3p1 - 1.0 -2.3 -

i - 1, ..., 10

s - .75 s - (1.1 + Pi)-cs/7.0 - 0, i - 10

10.0 cs1 - 10.0 csi 1 - sI - 0, 1 - 1, ... , 10
10.0 di  -tdi  + si  - 0, 1 1 , ... , 10

10.0 r- 10.0 ri*, + di - 0, i - 1, 10

Pi, tdi, sip csi, di, ri ) 0, i - 1, ... , 10.

This problem has 60 variables and 50 equality constraints.

Initial values for year 0: tdo - 1.8,

so - 6.5,

"es 0.0,0

r e - 5.0.

Start: Pi - 1.4, 1 - 1, ... , 10

tdi  M 1.8 , 1 s 1 , , 10

Si = 7.0, 1 - 1, ... , 10

di M tdi - si, i - 1, ... , 10

icsi  a r si -1, 10

J-1
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'0'

""". r i  - ri 1 - i - 1, ... , 10

f(x°) - -1198.1202

r(x°') - 11.565.

Results:

World Bank

OPCON Optimization (CONOPT)

* f(x*) -818.4235909 -818.42359

e(x*) 5.34E-02

r(x*) 3.23E-07

%
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.,s- l.X J NC VAL. ZUM. YDUKl)

- JORID ZAAX z:x A:C ODEL OF OIL PRICES.
T EX YEAR HQR4zc~.

- CILSO VERSION.

ZOUE.LZ PREC:3':ON X(i0) .7(11) .lDUNC1),FDIJN(l)
DOUILZ PRECISION (0,(0CS0)D1)R0)EO3

-~ DOUBLE PREC131ON 30,CC7) .EEROIONEDTEX
2ATA ZERO,ONETEN/0.aDo,:..aDa,1.0011
DATA. 3016."DOI

TRAX3FER :XPUT.VALIIE3 70 SUBROUTINE VARIABLES.

Do :0o :A.60~
I C 1) WIDUM ( I,

200 CONTINUIE

DO 30M Zal.l0
Falt 1)ZNP 1)-C 1) INIl)'C )"

:00i-

:v z.7Rz mn
END)S.)C3*S-C4CS'C1'Cit-ZUT
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[10] Mbdif led Powell Singular Function Problem

References: Buckley and Lenir [1983]

This is a modified version of Powell's singular function with

constraints added to create a large, constrained problem.

mmf~) 1 15 + 2 + )- 2
mi z)10 (c1 (x4j.3  lox 4 J-.2. 5 (c2x4j.. x4j)

+- c3(x4 j..2 -2x4j..) 
4 + lO(x4j. 3 -c 4x4j)

4 1

subject to (see the listing that follows for the code for

the objective function and 10 nonlinear constraints; the

linear constraints appear below)

-1015 -2x25 - 5x32 -10

-2x1l -5x4l - 10157 4 -10

-5113 -10124 - 2x6 0 4 -15

-5l 2x33 - 2x4 l -20

-5x28 -6x 3l - 20155 - 3x56 C -10

-10.0 4 xi 10.0, 1 -1, .. ,60.
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Start: xi- 1.0, i - 1, ... , 60.

f(x°) = 1.868,

r(x°) - 13.85.

* Result:

OPCON

f(x*) 0.9490162422

e(x*) 5.69E-05

S-r(x*) 1.07E-13

-A-33
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3UNROUTiNE rNCVAL 1, F)
C
C I CONSTRAINED VERSION OF THE1 POWELL SINGULAR FUNCTION
C MINIMIZATION PROBLEM.
C

DOUBLE PRECISIONVI(),4(1)
JJ C

&NTEGZU J
DOUBLE PRECISION TEII?,TWO.FIVE,TENZRO
DOUBLE PRECISION CC 10)_

C
DATA ZEROTWO,FIVE,TEXIO.0,2. o,5.0, io.a,
DATAC/.Z.0,.I.632O,.5,.2,.7,.1,101

C
TZMPwZERO
DO 10 Ja1,15

TVIP.TENP.C(1)'CZ(4*J-3),TEN'Z(4'J-2))"2 *
S FIVE*CC(2)*1(4*J-L)-I(4*J))**1 +

$ C(3)*(1(4*J-2)-TWOftZC4*J-1))*'*4
I TEN'(ZC4*J-3)-C(4)'Z(4*J))**4

* 10 CONTINUE

* F(I)=TEMPII.0D3

TZflPmZERO
Do 20 Ja1,20

TI=TEi1P-CC5)*(1(3*J-2),TWO*ZC3*J-1))**Z-

S TZX*(C(7)21C3*J-Z)-Z(3*J))*'2
20 CONTINUE -

* F(1)aCTENP+5.0D2)I1.0D3

TEMPmZERO
00 34 Ja.4

S FIVE*(C(1C)*Z(10*J),TWO2Z(10*J-5))**1
* 30 CONTINUE

C
r(3)w(TEMP+4.0D2)I1.0D3

C
TRIImuZERO

* DO 46 3.1.3

"TI'PTZP-C(1)'C(20J)-Z(20*J-i9))"2 -

$ C(2)* (Ecf20'j)+Iz(0j-?))"*z-
* 5C(3)'ZC(20*J-7)-TWO*1(20*J-19))**I

40 CONTINUE

FC4)w(T2fl144.5D2)/l.OD3

TiTHPOaZERO
DO 50 J01,6

ZMBuITEP-C4)((0J-I)+TWO*1(10*J-8) )**.-

A-34
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50 CONTINUE

F(5 )a(TJIP.7. 002)/l.003
C

DO 60 Jal.10

60 CONTINUE

F(6)a(T21P~1.003)/I. 003
C

.EFlISZERO
DO 70 J%1,3

7RX?.TZMP-C(10)t(X(20*J-4),TWOuZ(20*J-16))**2

70 CONTINUE

Fr7-rNP+.. 3)11.003'

?RJIPUZERO

00 S0 Jul.12
itElPTRP-(C(3)*(53)-TWO'I(S5*J-2))"2 -

C
7(810)fl(111 .003)11.0031

C

Y~lUu(-CC~)ZC5)-TI'Z(0))" - (50)'Z(40) + 5.01))1.01)3
C.

C
* . RETURN
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[11] Modified EXTROS Function Problem

Reference: Buckley and Lenir [1983]

%16

This is a modified version of the EXTROS function described in the

dreference. The constraint functions are similar to those for the

preceding problem.

~~~30 2 2( ~_

min f(x) 3 100 21) + -
100 Z [10 (x21 x 2 1 ) (1 x21

"h subject to (see the listing that follows and the linear

constraints for the preceding problem).
'-U..

Start: x0i - 1.0, i - 1, ..., 60

f(x°) - 0.0

r(x°) - 1238.9.

Result:

~.-

OPCON

'. f(x*) 0.1289735371

e(x*) 9.78E-05

-a r(x*) 0.0

A-36
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3UBROUTINE FNCVAL(ZIF)

C. A CONSTRAINED VERSION Of THE EXTROS FUNCTION
C MINIMIZATION PROBLEM.
C.

DOUBLE PRECISION ZC1),rtl)
C

DOUBLE PRECISION TEMPONE,TWO,FIVE,TEN,HUNDRD,ZERO
f DOUBLE PRECISION C(24)

C
DATA ZEROONE.TWO,FIVE,TEN,HUNDRD/O.DO,1.DO,2.DO,5.DO,1.DI,1. 00)2
DATA C10,~510,~3zOs5135 ~4114I0~

t 5.0432,7.211,.4.903,1 .3271
C

TTMP= ZRO
DO 10 Ju.30

10 CONTINUE
c

* rci )=TE3IPIHUNDRD
C

DO 0 3.1J,20

S TEN*(C(3)*1c3*J-I)-1(33J))**2
20 CONTINUE

F(2)=TENP+5.ODZ
C

DO 30 Jn1,t
TflhPuTEP-C4)(RC10a;J),1*J9))**3

TIVgt(C(6),Rc10*J)eTWO*ZCIoaJ-5))**2
34 CONTINUE

C

TEXPUaZERO
DO 40 3.1,3

* 40 CONTINUE

F(4)mTEMP.4 .502
C

TEMPOaZERO
DO So J81,6

*TIPTMP-C(10)(1(10J-),rWOaIcloaJ-,)),**Z
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TEMP a ZERO
DO 60 3.1,10

60 CONTINUE

C F1)sTENP..D3

TZM?.ZERO
DO 70 3=1,3

TE?PTEP-C(16)*.ZZ0J-4),TVO*Z30*J-16)i**2

70 CONTINUE

C T?)=TZMP+. .D3

c
TEI1 ZRO
Do 80 301,12

TflPuTEXP-(C(19)*X(5*J)-TWO*X(5*J-2))**Z-

C
FCS)=TEXP.1 .003

I(~.-(C21'Z(0)-WO*C11)I* - (10)*I(11) + 2.001

F(10)a-(C(12Z)'Z(0)-TEX*2(40))**2 -1(50)*1(40) + 5.01

RETURN
0 ENID
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APPENDIX B

MINIMIZING A QUADRATIC FUNCTION OVER

A SET OF MINIMAL INFEASIBILITY



In this appendix, we solve the problem of minimizing a strictly

convex quadratic function over a set of "minimally infeasible" points

defined by a set of inconsistent linear inequalities. Let the original

quadratic program be given by

(P) min (I/2)x'Qx + q'x

4 . -  X ERn

subject to Ax 4 b,

where Q is a positive definite n x n matrix, q is an n x 1 vector, A is

=. an m x n matrix, and b is an m x 1 vector. It can be shown that the

following problem is dual to (P).

(D) min (l/2)w'Kw + k'w

w e Rm

subject to v > 0,

where K- = -A ' and k AQ-q+b. If (P) is feasible, then (P) has a

solution x*, (D) has a solution w*, and

SB-2
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x* --Q-I[Alw* + q].

(See the discussion in section 1.3.1.)

We now consider the case when (P) is infeasible. To analyze this

** - case, we use the perturbed problem in (x, s):

(P min (1/2)x'Qx + q'x + s's

x eRn

0 subject to Ax + s 4 b,

with e > 0. Clearly, (P.) is always feasible. Note that (P.) is not

defined at c -0, so that it is not clear that as e .0 the solution of

(1) will be related to the solution of (P). Also note that s is not a

".. slack variable since it is unconstrained in sign.

Given any x, it is necessary to choose s so that for each i,

. .i "1, .. ,m:
Si

(Ax - b)i 4 0 + si - 0

(Ax - b)i > 0 * si - -(Ax - b)i,

in order to minimize the objective function of (P over s. Thus we

have

B-3
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Prop. Bi: ) is equivalent to the unconstrained problem

1
min (1/2)x'Qx + q'x + 1 (Ax - b)+'(Ax -b)+

x

Let

Z {x: I(Ax -b)+12 4 (Az -b)+12 for all z e n)

i.e., Z is the set of points in Rn closest to feasibility in that the

residual vector is smallest in norm. Note that Z is a convex set with

Z - {x: Ax 4 b } if the latter set is nonempty.

Example Bl: Am -1 0 and b - 0
0 1 0

Define the constraints:

x i + x2 4 -l

xI1)0

x2 )O

which are clearly inconsistent. In this case, Z - {(-1/4, -1/4)).

Example B2: A and b -
A--2

B-4
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Define the constraints:

|x
41 1 + x 2 'C-1

.i. x 1 + x 2 > 2

which are also inconsistent. In this case, Z - {x: x1 + x2 - 1/2).

(P .) is a strictly convex program so that for every e > 0 there

exists a unique solution (xe, se) with

(B1) se -(Axe - b)+.

Let

-- - IAx - b)+ 12for x e Z (y > 0),

-- min {(1/2)x'Qx + q'x},
x

and

- mn (1/2)x'Qx + q'x (C T)

x e Z

Denoting

.-
5

• a,' -



" " "1 1
Q (x,s) - (l/2)x'Qx + q'x + s's - Q(x) + 1 s's,

C 2e Tes

where Q(x) - (1/2)x'Qx + q'x, we have

1 e

-n + e c Qe(x, se) 4 C + 1

which implies Qc(xc, se) + + " as e + 0 if and only if y > 0. Thus

Is. (B2) , Q (x e , se) -T1 ) +Y. s - *,) ( .

Now it follows from (31) that sr-IsC - y >0. Therefore, since e

implies Q(xe) + + , (B2) implies that {xe } must remain bounded and

hence

J. (B3) (s es - Y) = 0(e).

We are led to the following result.

Prop. B2: Let {xe, se)} be the family of solutions to (P.). Then

lim (xe, ge) = ( , )
e +

where x is the unique solution to the problem

% B-6
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7. %

min (l/2)x'Qx + q'x

subject to x e Z.

I

Pf: It follows from the earlier comments that {xe} is bounded.

Let be any limit point of (xe}, i.e., there is a sequence {el} 0+

Leet
* '~ such that

lim x - x

It follows from (Bl) that

s iim s l - -lim (Axe -b)+ -(Ax b)+

exists and from (B3) that s 's - y. Thus, x e Z. Now suppose, for

contradiction, there is an x0 e Z such that

Q(x) - (l/2)x'Qx + q'x > (l/2)x°'Qx ° + q'x° - Q(x°).

Let so - (Axo - b)+. Then, for any el

B-7



Qe (xo',so)~ QC (x a

Q(x ) - Q(x e) + _. < 0

which contradicts the definition of (xi, s).

If (P) is feasible, (x, s) - (x*, u*), where u* is the multiplier of the

dual problem to (P) and x* is the solution to (P). Proposition B2 is a

special case of the penalty function theory for nonlinear programming.

Let (xc, se) be the solution to (P.) and let

r = i: (Axe - b)j > O}.

i.e., J is the index set of violated constraints. Using the

unconstrained form of (P. (see Problem Bl) we have that xe is a

solution of

min (1/2)x'Qx + q'x + (Ax -

if and only if

Qx +q+ { E Ai (Ax" b)i}- 0.

a.
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To construct a dual for (P we consider the Lagrangian function

L (x, s, w)- (1/2)x'Qx + q'x + ss + w'CAx + - b).

(Pe) is equivalent to

" q..Q "Q(x, s): Ax + s 4 b

inf sup Le(x, s, w) - inf s

(x,s) w 0 0 (Xs) + : otherwise

and we define the dual problem to be

sup inf L (x, s, w).
w > 0 (xs)

For a given w > 0, we have that (xw, sw ) minimizes L,(x, s, w) if and

only if

Qxw + q + A'w 0

and
1-S +w 0.

Solving for xw and sw we obtain

B-9



w -q(A w + q]

and

$W 8 -cW.

Therefore,

.1.4 Le(xv, s, w) - (1/2)(A'w + q)'Q-1 QQ-1 (A'w + q)

.qQ-(Aw+ q) + -Le ww

+w' (-AQ-IA'w - AQ-Iq - cw - b)

4

-- (1/2)w' AQ A' - (AQ-q + b)'w - (1/2)ev'w (1/2)q'Qt q

and hence we have the following proposition.

Prop. B3: Solving the quadratic program

(De) min (1/2)w'(K + eI)w + k'w,

w e Rm

whereS

K AQ- A

and

k AQlq + b

B-10
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is equivalent to solving (P) Finally, we obtain the following

theo rem.

* Theorem (Theorem 3 of Section 1.3.1): Let (we) be the family of

solutions to (Di) for positive values of e and for each e let xe be

given by

1c -Q- j~lA~wC + q].

Then

1liii x -X'
C+

.1* where x is a solution of the problem

.1~*

min (l/2)x'Qx + q'x.

Pf: Propositions Bl, B2, and B3 imply the theorem for problems

having inequality constraints. Extension of the proof to include

equality constraints is straightforward.

B1
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